Characterization of Normal Traces on Von Neumann Algebras by Inequalities for the Modulus

被引:0
作者
A. I. Stolyarov
O. E. Tikhonov
A. N. Sherstnev
机构
[1] Kazan State University,
来源
Mathematical Notes | 2002年 / 72卷
关键词
von Neumann algebra; normal semifinite weight; trace; ultrastrong topology; ultraweak topology;
D O I
暂无
中图分类号
学科分类号
摘要
It is proved that if a normal semifinite weight ϕ on a von Neumann algebra \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{M}$$ \end{document} satisfies the inequality \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\phi (|a_1 + a_2 |) \leqslant \phi (|a_1 |) + \phi (|a_2 |)$$ \end{document} for any selfadjoint operators \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$a_1 ,a_2 $$ \end{document} in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{M}$$ \end{document}, then this weight is a trace. Several similar characterizations of traces among the normal semifinite weights are proved. In particular, Gardner's result on the characterization of traces by the inequality \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$|\phi (a)|{\text{ }} \leqslant {\text{ }}\phi (|a|)$$ \end{document} is refined and reinforced.
引用
收藏
页码:411 / 416
页数:5
相关论文
共 9 条
[1]  
Haagerup U.(1975)Normal weights on J. Funct. Anal. 19 302-317
[2]  
Pedersen G. K.(1973)-algebras Acta Math. 130 53-87
[3]  
Takesaki M.(1981)The Radon-Nikodym theorem for von Neumann algebras Math. Z. 176 21-34
[4]  
Upmeier H.(1988)Automorphism groups of Jordan Linear Algebra Appl. 111 43-52
[5]  
Petz D.(1971)-algebras Bull. Soc. Math. France 99 73-112
[6]  
Zemánek J.(1975)Characterizations of the trace Math. Scand. 37 142-144
[7]  
Combes F.(1979)Poids et espérances conditionnelles dans les algèbres de von Neumann Canad. J. Math. 31 1322-1328
[8]  
Pedersen G. K.(undefined)The trace in semi-finite von Neumann algebras undefined undefined undefined-undefined
[9]  
Gardner L. T.(undefined)An inequality characterizes the trace undefined undefined undefined-undefined