On Hausdorff dimension of invariant measures arising from non-contractive iterated function systems

被引:0
作者
Myjak J. [1 ,2 ]
Szarek T. [3 ,4 ]
机构
[1] Dipartamento di Matematica Pura cd Applicata, Universitá di L'Aquila, 67100 L'Aquila, via Vetoio
[2] WMS AGH al., 30-059 Krakow
[3] Institute of Mathematics, Silesian University, 40-007 Katowice
[4] Department of Mathematics, Technical University of Rzeszów, 35-959 Rzeszów
关键词
Hausdorff dimension; Invariant measure; Iterated Function System; Markov operator;
D O I
10.1007/s102310100041
中图分类号
学科分类号
摘要
Under rather general assumptions we give an upper and lower bound estimate of the Hausdorff dimension of the invariant probability measure for an iterated function systems acting on a Polish space.
引用
收藏
页码:223 / 237
页数:14
相关论文
共 27 条
[1]  
Barnsley M.F., Fractals Everywhere, (1993)
[2]  
Barnsley M.F., Demko S.G., Elton J.H., Geronimo J.S., Invariant measures arising from iterated function systems with place dependent probabilities, Ann. Inst. Henri Poincaré, 24, pp. 367-394, (1988)
[3]  
Brin M., Katok A., On local entropy in geometric dynamics, Lecture Notes in Mathematics, 1007, pp. 30-38, (1983)
[4]  
Dudley R.M., Probabilities and Matrics, (1976)
[5]  
Elton J.H., An ergodic theorem for iterated maps, J. Ergodic Theor. Dynam. Syst., 7, pp. 481-488, (1987)
[6]  
Falconer K.J., Dimensions and measures of quasi self-similar sets, Proc. Amer. Math. Soc., 106, pp. 543-554, (1989)
[7]  
Falconer K.J., The Geometry of Fractal Sets, (1985)
[8]  
Falconer K.J., Techniques in Fractal Geometry, (1997)
[9]  
Fan A.H., Lau K.S., Iterated function system and Ruelle operator, J. Math. Anal. Appl., 231, pp. 319-344, (1999)
[10]  
Fortet R., Mourier B., Convergence de la répartition empirique vers la répartition théorétique, Ann. Sci. École Norm. Sup., 70, pp. 267-285, (1953)