Optical parametric amplification by monolayer transition metal dichalcogenides

被引:0
作者
Chiara Trovatello
Andrea Marini
Xinyi Xu
Changhwan Lee
Fang Liu
Nicola Curreli
Cristian Manzoni
Stefano Dal Conte
Kaiyuan Yao
Alessandro Ciattoni
James Hone
Xiaoyang Zhu
P. James Schuck
Giulio Cerullo
机构
[1] Columbia University,Department of Mechanical Engineering
[2] Politecnico di Milano,Dipartimento di Fisica
[3] University of L’Aquila,Department of Physical and Chemical Sciences
[4] Columbia University,Department of Chemistry
[5] Istituto Italiano di Tecnologia,Graphene Labs
[6] IFN-CNR,Dipartimento di Scienze Fisiche e Chimiche
[7] CNR-SPIN,undefined
来源
Nature Photonics | 2021年 / 15卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Optical parametric amplification is a second-order nonlinear process whereby an optical signal is amplified by a pump via the generation of an idler field1. This mechanism is inherently related to spontaneous parametric down-conversion, which currently constitutes the building block for entangled photon pair generation2, a process that is exploited in modern quantum technologies. Here we demonstrate single-pass optical parametric amplification at the ultimate thickness limit; using semiconducting transition metal dichalcogenides3,4, we show that amplification can be attained over propagation through a single atomic layer. Such a second-order nonlinear interaction at the two-dimensional limit bypasses phase-matching requirements5 and achieves ultrabroad amplification bandwidths. In agreement with first-principle calculations, we observe that the amplification process is independent of the in-plane polarization of signal and pump fields. By the use of AA-stacked multilayers, we present a clear pathway towards the scaling of conversion efficiency. Our results pave the way for the development of atom-sized tunable sources of radiation with potential applications in nanophotonics and quantum information technology.
引用
收藏
页码:6 / 10
页数:4
相关论文
共 55 条
  • [1] Kwiat PG(1995)New high-intensity source of polarisation-entangled photon pairs Phys. Rev. Lett. 75 4337-4341
  • [2] Chernikov A(2014)Exciton binding energy and nonhydrogenic rydberg series in monolayer WS Phys. Rev. Lett. 113 076802-119
  • [3] Qiu DY(2013)Optical spectrum of MoS Phys. Rev. Lett. 111 216805-1740
  • [4] da Jornada FH(2018): many-body effects and diversity of exciton states Light Sci. Appl. 7 5-976
  • [5] Louie SG(1961)Phase-matching-free parametric oscillators based on two-dimensional semiconductors Phys. Rev. Lett. 7 118-424
  • [6] Ciattoni A(1996)Generation of optical harmonics Opt. Quant. Electron. 28 1691-1475
  • [7] Marini A(1965) Cascading phenomena and their applications to all-optical signal processing, mode-locking, pulse compression and solitons Phys. Rev. Lett. 14 973-20
  • [8] Rizza C(1966)Tunable coherent parametric oscillation in LiNbO IEEE J. Quant. Electron. 9 418-462
  • [9] Conti C(1987) at optical frequencies J. Opt. Soc. Am. B 4 1465-3333
  • [10] Franken PA(1962)Theory of the optical parametric oscillator Phys. Rev. Lett. 8 19-1166