Delay-dependent robust \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_\infty $$\end{document} control for 2-D discrete nonlinear systems with state delays

被引:1
作者
Shipei Huang
Zhengrong Xiang
机构
[1] Nanjing University of Science and Technology,School of Automation
关键词
2D discrete systems; State delays; Exponential stability; performance;
D O I
10.1007/s11045-013-0230-y
中图分类号
学科分类号
摘要
This paper investigates the problem of robust \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_\infty $$\end{document} control for a class of 2-D (two-dimensional) discrete state delayed systems with sector nonlinearity described by a model of Roesser type. Firstly, a delay-dependent sufficient condition of robust exponential stability for such 2-D discrete systems is derived in linear matrix inequalities (LMIs) form. Secondly, a delay-dependent exponential stability criterion with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_\infty $$\end{document} performance for the considered systems is also proposed. Then a state feedback \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_\infty $$\end{document} controller is constructed based on the above results. Finally, numerical examples are given to illustrate the effectiveness of the proposed method.
引用
收藏
页码:775 / 794
页数:19
相关论文
共 50 条