Algebra generated by Toeplitz operators with T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {T}}$$\end{document}-invariant symbols

被引:0
作者
Nikolai Vasilevski
机构
[1] CINVESTAV,Departamento de Matemáticas
关键词
Toeplitz operators; -invariant symbol; Bergman space; Primary 47B35; Secondary 32A36;
D O I
10.1007/s40590-020-00306-y
中图分类号
学科分类号
摘要
We study the structure of the C∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^*$$\end{document}-algebras generated by Toeplitz operators acting on the weighted Bergman space Aλ2(B2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {A}}^2_{\lambda }({\mathbb {B}}^2)$$\end{document} on the two-dimensional unit ball, whose symbols are invariant under the action of the group T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {T}}$$\end{document}. We consider three principally different basic cases of its action t:(z1,z2)↦(tz1,tk2z2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t:\,(z_1,z_2) \mapsto (tz_1,t^{k_2}z_2)$$\end{document}, with k2=1,0,-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k_2=1,0,-1$$\end{document}. The properties of the corresponding Toeplitz operators as well as the structure of the C∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^*$$\end{document}-algebra generated by them turn out to be drastically different for these three cases.
引用
收藏
页码:1217 / 1242
页数:25
相关论文
共 18 条
[1]  
Alzer H(2003)Inequalities for the Beta function of ANZIAM J. 44 609-623
[2]  
Bauer W(2019) variables Complex Anal. Oper. Theory 13 493-524
[3]  
Hagger R(2017)Algebras of Toeplitz operators on the n-dimensional unit ball J. Funct. Anal. 272 705-737
[4]  
Vasilevski N(1967)On algebras generated by Toeplitz operators and their representations Bull. Am. Math. Soc. 73 722-726
[5]  
Bauer W(2013)The Commun. Math. Anal. 14 77-94
[6]  
Vasilevski N(2015)-algebra generated by an isometry Integral Equ. Oper. Theory 83 49-60
[7]  
Coburn L(2007)Radial Toeplitz operators on the unit ball and slowly oscillating sequences Integral Equ. Oper. Theory 59 379-419
[8]  
Grudsky SM(1925)Radial Toeplitz operators revisited: discretization of the vertical case Math. Z. 22 89-152
[9]  
Maximenko EA(2008)Commutative Bull. Lond. Math. Soc. 40 631-641
[10]  
Vasilevski NL(2018)-algebras of Toeplitz operators on the unit ball, I. Bargmann-type transforms and spectral representations of Toeplitz operators Bull. Fac. Sci. Univ. Ryukyus 106 1-31