Identification of CO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{\mathrm{2}}$$\end{document} and O2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{\mathrm{2}}$$\end{document} emissions dynamics in a natural gas furnace through flame images, ARMAX models, and Kalman filtering

被引:0
作者
Gustavo C. Silva Neto
Danilo S. Chui
Flavius P. R. Martins
Agenor T. Fleury
Fausto Furnari
Flávio C. Trigo
机构
[1] Faculdade de Tecnologia da Universidade Federal do Amazonas,Departamento de Engenharia Mecânica
[2] Escola Politécnica da Universidade de São Paulo (USP),Departamento de Engenharia Mecânica
[3] F. Furnari Combustão Industrial,undefined
关键词
System identification; ARMAX models; Kalman filters; Combustion emissions; Image processing;
D O I
10.1007/s40430-021-02967-w
中图分类号
学科分类号
摘要
Efficient diagnosis of emissions from combustion processes plays a key role in their control, an essential part of the overall effort to mitigate the increasing greenhouse effect. In industrial furnaces, a set of sensors (COx\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{\mathrm{x}}$$\end{document}, SOx\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{\mathrm{x}}$$\end{document}, NOx\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{\mathrm{x}}$$\end{document}) at the exhaust is used to monitor pollutant rates, thus providing the necessary information for control purposes. In the case of natural gas furnaces, measurements of O2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{\mathrm{2}}$$\end{document} and CO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{\mathrm{2}}$$\end{document} contents are used to check the condition of the combustion process. In this work, we propose a method to estimate the O2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{\mathrm{2}}$$\end{document} and CO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{\mathrm{2}}$$\end{document} contents at the exhaust of a natural gas prototype furnace from images of flames grabbed by a charge-coupled device (CCD) camera. Feature vectors obtained from computer processing of the grabbed images are used as input data to identify auto-regressive moving average (ARMAX) “black box” models having CO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{\mathrm{2}}$$\end{document} content as output. Estimates of O2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{\mathrm{2}}$$\end{document} content by a Kalman filter running a preliminary ARMAX model help the overall performance of the method. Results show that the flame dynamics identified model is capable of yielding statistically significant estimates of both O2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{\mathrm{2}}$$\end{document} and CO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{\mathrm{2}}$$\end{document} composition in the flue gas up to 10 s before the arrival of actual O2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{\mathrm{2}}$$\end{document} measurements. This outcome suggests that the inclusion of the proposed method in the closed-loop control strategy of similar combustion processes might be advantageous.
引用
收藏
相关论文
共 52 条
[1]  
Brunekreef B(2002)Air pollution and health The Lancet 360 1233-1242
[2]  
Holgate ST(2020)On the dynamics of flame images identified through computer vision and modal methods J Braz Soc Mech Sci Eng 42 15-4769
[3]  
Chui DS(2013)A new approach based on computer vision and non-linear Kalman filtering to monitor the nebulization quality of oil flames Expert Syst Appl 40 4760-2428
[4]  
Silva Neto GC(2015)Identification of the state-space dynamics of oil flames through computer vision and modal techniques Expert Syst Appl 42 2421-411
[5]  
Trigo FC(2010)Diagnostic techniques for the monitoring and control of practical flames Prog Energy Combust Sci 36 375-809
[6]  
Martins FP(2013)Characterization of pf flames under different swirl conditions based on visualization systems Fuel 113 798-384
[7]  
Fleury AT(2012)Coal flame characterization by means of digital image processing in a semi-industrial scale pf swirl burner Appl Energy 94 375-310
[8]  
Fleury AT(2015)Experimental analysis of biomass co-firing flames in a pulverized fuel swirl burner using a ccd based visualization system Fuel Process Technol 130 299-160
[9]  
Trigo FC(2013)Gaussian process regression based optimal design of combustion systems using flame images Appl Energy 111 153-8783
[10]  
Martins FPR(2017)Flame images for oxygen content prediction of combustion systems using DBN Energy Fuels 31 8776-169