Lipschitz regularity for viscosity solutions to parabolic p(x,t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varvec{p(x,t)}}$$\end{document}-Laplacian equations on Riemannian manifolds

被引:0
作者
Soojung Kim
机构
[1] Korea Institute for Advanced Study,School of Mathematics
关键词
-Laplacian operator; Lipschitz regularity; Viscosity solutions; Riemannian manifold; 35K92; 58J35; 35D40; 35B65;
D O I
10.1007/s00030-018-0519-5
中图分类号
学科分类号
摘要
We study viscosity solutions to parabolic p(x, t)-Laplacian equations on Riemannian manifolds under the assumption that a continuous exponent function p is Lipschitz continuous with respect to spatial variables, and satisfies 1<p-≤p(x,t)≤p+<∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ 1< p_- \le p(x,t)\le p_+<\infty $$\end{document} for some constants 1<p-≤p+<∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1<p_-\le p_+ <\infty $$\end{document}. Using Ishii–Lions’ method, a Lipschitz estimate of viscosity solutions is established on Riemannian manifolds with sectional curvature bounded from below.
引用
收藏
相关论文
共 85 条
[1]  
Acerbi E(2002)Regularity results for stationary electro-rheological fluid Arch. Ration. Mech. Anal. 164 213-259
[2]  
Mingione G(2004)Regularity results for parabolic systems related to a class of non-Newtonian fluids Ann. Inst. H. Poincaré Anal. Non Linéaire 21 25-60
[3]  
Acerbi E(2009)Anisotropic parabolic equations with variable nonlinearity Publ. Mat. 53 355-399
[4]  
Mingione G(2005)Higher integrability for parabolic equations of Adv. Differ. Equ. 10 1053-1080
[5]  
Seregin GA(2008)-Laplacian type J. Differ. Equ. 245 307-336
[6]  
Antontsev S(2008)Viscosity solutions to second order partial differential equations on Riemannian manifolds Calc. Var. Partial Differ. Equ. 33 133-167
[7]  
Shmarev S(2002)Generalized motion of level sets by functions of their curvatures on Riemannian manifolds Arch. Ration. Mech. Anal. 162 287-325
[8]  
Antontsev S(2014)A geometrical approach to the study of unbounded solutions of quasilinear parabolic equation Revista Mat. Iberoam. 30 1355-1386
[9]  
Zhikov VV(1995)Calderón–Zygmund estimates for parabolic SIAM J. Numer. Anal. 32 484-500
[10]  
Azagra D(2010)-Laplacian systems Nonlinear Differ. Equ. Appl. 17 697-714