Quantum Cohomologies on Products of Cosymplectic Manifolds and Circles

被引:0
作者
Yong Seung Cho
Young Do Chai
机构
[1] Ewha Womans University,Division of Mathematical and Physical Sciences, College of Natural Sciences
[2] Sungkyunkwan University,Department of Mathematics, College of Natural Sciences
来源
Bulletin of the Malaysian Mathematical Sciences Society | 2018年 / 41卷
关键词
Cosymplectic manifold; Symplectic manifold; Gromov–Witten invariant; Quantum cohomology; 55S15; 57R15; 58D15; 53D15;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we study the products of cosymplectic manifolds and a unit circle, which have natural symplectic structures. We have some relations on moduli spaces, Gromov–Witten invariants, and quantum cohomologies of cosymplectic manifolds and the products. As an example we examine the cosymplectic manifold M=S2×T×S1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M=S^2\times T\times S^1$$\end{document} and the product M×S1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M\times S^1$$\end{document}, and we also calculate their moduli spaces, Gromov–Witten invariants, and quantum cohomologies.
引用
收藏
页码:1211 / 1222
页数:11
相关论文
共 24 条
[1]  
Blair DE(1967)Topology of almost contact manifolds J. Differ. Geom. 1 347-354
[2]  
Goldberg SI(1953)A class of complex manifolds which are not algebraic Ann. Math. 58 494-500
[3]  
Calabi E(2012)Generating series for symmetric product spaces Int. J. Geom. Methods Modern Phys. 9 1250045-1412
[4]  
Eckmann B(2012)Quantum cohomologies of symmetric products In. J. Geom. Methods Modern Phys. 9 1250005-555
[5]  
Cho YS(2010)Jacobi fields in geodesic surface congruences Int. J. Geom. Methods Modern Phys. 7 1407-173
[6]  
Cho YS(2007)Stringy Jacobi fields in Morse theory Phys. Rev. D 75 127902-261
[7]  
Cho YS(2008)Singularities in geodesic surface congruence Phys. Rev. D 78 067301-1048
[8]  
Cho YS(2011)Dynamics of stringy congruence in the early universe Phys. Rev. D 83 104040-27
[9]  
Hong ST(2008)Hurwitz number of triple ramified covers J. Geom. Phys. 56 542-562
[10]  
Cho YS(1997)Seiberg–Witten invariants on non-symplectic 4-manifolds Osaka J. Math. 34 169-25