Convergence and Approximation of the Sturm–Liouville Operators with Potentials-Distributions

被引:0
作者
A. S. Horyunov
机构
[1] Ukrainian National Academy of Sciences,Institute of Mathematics
来源
Ukrainian Mathematical Journal | 2015年 / 67卷
关键词
Green Function; Limit Relation; LIOUVILLE Operator; Schmidt Norm; Resolvent Convergence;
D O I
暂无
中图分类号
学科分类号
摘要
We study the operators Lny = −(pny′)′+qny, n ∈ ℤ+, given on a finite interval with various boundary conditions. It is assumed that the function qn is a derivative (in a sense of distributions) of Qn and 1/pn, Qn/pn, and Qn2/pn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {Q}_n^2/{p}_n $$\end{document} are integrable complex-valued functions. The sufficient conditions for the uniform convergence of Green functions Gn of the operators Ln on the square as n → ∞ to G0 are established. It is proved that every G0 is the limit of Green functions of the operators Ln with smooth coefficients. If p0> 0 and Q0(t) ∈ ℝ, then they can be chosen so that pn> 0 and qn are real-valued and have compact supports.
引用
收藏
页码:680 / 689
页数:9
相关论文
共 19 条
  • [1] Goriunov AS(2010)Regularization of singular Sturm–Liouville equations Meth. Funct. Anal. Topol. 16 120-130
  • [2] Mikhailets VA(2013)Weyl–Titchmarsh theory for Sturm–Liouville operators with distributional coefficients Opusc. Math. 33 467-563
  • [3] Eckhardt J(1975)Formally self-adjoint quasi-differential operators Rocky Mountain J. Math. 5 453-474
  • [4] Gesztesy F(2011)Regularization of two-term differential equations with singular coefficients by quasiderivatives Ukr. Math. J. 63 1190-1205
  • [5] Nichols R(1999)Sturm–Liouville operators with singular potentials Math. Notes 66 741-753
  • [6] Teschl G(2010)Resolvent convergence of Sturm–Liouville operators with singular potentials Math. Notes 87 287-292
  • [7] Zettl A(2014)Inequalities among eigenvalues of Sturm–Liouville problems with distribution potentials J. Math. Anal. Appl. 409 509-520
  • [8] Goriunov AS(2013)Limit theorems for one-dimensional boundary-value problems Ukr. Math. J. 65 77-90
  • [9] Mikhailets VA(1967)Limit Transition for the nonsingular systems Dokl. Akad. Nauk SSSR 176 774-777
  • [10] Savchuk A(undefined) =  undefined undefined undefined-undefined