Analysis of the SORAS Domain Decomposition Preconditioner for Non-self-adjoint or Indefinite Problems

被引:0
作者
Marcella Bonazzoli
Xavier Claeys
Frédéric Nataf
Pierre-Henri Tournier
机构
[1] Institut Polytechnique de Paris,Inria, Centre de Mathématiques Appliquées, CNRS, École Polytechnique
[2] Sorbonne Université,Laboratoire Jacques
[3] CNRS,Louis Lions
[4] Inria,undefined
[5] Université de Paris,undefined
来源
Journal of Scientific Computing | 2021年 / 89卷
关键词
Non-self-adjoint problems; Indefinite problems; Domain decomposition; Preconditioners; Field of values; Reaction–convection–diffusion equation; 65N55; 65F08; 65F10; 76R99;
D O I
暂无
中图分类号
学科分类号
摘要
We analyze the convergence of the one-level overlapping domain decomposition preconditioner SORAS (Symmetrized Optimized Restricted Additive Schwarz) applied to a generic linear system whose matrix is not necessarily symmetric/self-adjoint nor positive definite. By generalizing the theory for the Helmholtz equation developed in Graham et al. (SIAM J Numer Anal 58(5):2515–2543, 2020. https://doi.org/10.1137/19M1272512), we identify a list of assumptions and estimates that are sufficient to obtain an upper bound on the norm of the preconditioned matrix, and a lower bound on the distance of its field of values from the origin. We stress that our theory is general in the sense that it is not specific to one particular boundary value problem. Moreover, it does not rely on a coarse mesh whose elements are sufficiently small. As an illustration of this framework, we prove new estimates for overlapping domain decomposition methods with Robin-type transmission conditions for the heterogeneous reaction–convection–diffusion equation (to prove the stability assumption for this equation we consider the case of a coercive bilinear form, which is non-symmetric, though).
引用
收藏
相关论文
共 52 条
[1]  
Achdou Y(2000)A domain decomposition preconditioner for an advection–diffusion problem Comput. Methods Appl. Mech. Eng. 184 145-170
[2]  
Le Tallec P(2005)Some remarks on the Elman estimate for GMRES SIAM J. Matrix Anal. Appl. 27 772-778
[3]  
Nataf F(2019)Domain decomposition preconditioning for the high-frequency time-harmonic Maxwell equations with absorption Math. Comput. 88 2559-2604
[4]  
Vidrascu M(1991)Additive Schwarz algorithms for parabolic convection–diffusion equations Numer. Math. 60 41-61
[5]  
Beckermann B(1992)Domain decomposition algorithms for indefinite elliptic problems SIAM J. Sci. Stat. Comput. 13 243-258
[6]  
Goreinov SA(1996)A convergence theory of multilevel additive Schwarz methods on unstructured meshes Numer. Algorithms 13 365-398
[7]  
Tyrtyshnikov EE(1983)Variational iterative methods for nonsymmetric systems of linear equations SIAM J. Numer. Anal. 20 345-357
[8]  
Bonazzoli M(1998)Weighted FOM and GMRES for solving nonsymmetric linear systems Numer. Algorithms 18 277-292
[9]  
Dolean V(2020)Domain decomposition preconditioners for high-order discretizations of the heterogeneous Helmholtz equation IMA J. Numer. Anal. 86 2089-2127
[10]  
Graham IG(2017)Domain decomposition preconditioning for high-frequency Helmholtz problems with absorption Math. Comput. 58 2515-2543