Global existence and boundedness in a three-dimensional chemotaxis-Stokes system with nonlinear diffusion and general sensitivity

被引:0
作者
Jiashan Zheng
机构
[1] Yantai University,School of Mathematics and Statistics Science
来源
Annali di Matematica Pura ed Applicata (1923 -) | 2022年 / 201卷
关键词
Tensor-valued sensitivity; Chemotaxis-stokes system; Nonlinear diffusion; Global existence; 35K55; 35Q92; 35Q35; 92C17;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider the following chemotaxis-Stokes system with nonlinear diffusion and rotational flux CNFnt+u·∇n=Δnm-∇·(nS(x,n,c)·∇c),x∈Ω,t>0,ct+u·∇c=Δc-nc,x∈Ω,t>0,ut+∇P=Δu+n∇ϕ,x∈Ω,t>0,∇·u=0,x∈Ω,t>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \left\{ \begin{array}{l} n_t+u\cdot \nabla n=\Delta n^m-\nabla \cdot (nS(x,n,c)\cdot \nabla c),\quad x\in \Omega , t>0,\\ c_t+u\cdot \nabla c=\Delta c-nc,\quad x\in \Omega , t>0,\\ u_t+\nabla P=\Delta u+n\nabla \phi ,\quad x\in \Omega , t>0,\\ \nabla \cdot u=0,\quad x\in \Omega , t>0\\ \end{array}\right. \end{aligned}$$\end{document}in a bounded domain Ω⊆R3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega \subseteq \mathbb {R}^3$$\end{document} with smooth boundary, which describes the motion of oxygen-driven swimming bacteria in an incompressible fluid. Here the matrix-valued function S∈C2(Ω¯×[0,∞)2;R3×3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S\in C^2(\bar{\Omega }\times [0,\infty )^2;\mathbb {R}^{3\times 3})$$\end{document} fulfills |S(x,n,c)|≤S0(c)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|S(x,n,c)| \le S_0(c)$$\end{document} for all (x,n,c)∈Ω¯×[0,∞)×[0,∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(x,n,c)\in \bar{\Omega } \times [0, \infty )\times [0, \infty )$$\end{document} with S0(c)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_0(c)$$\end{document} nondecreasing on [0,∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[0,\infty )$$\end{document}. With developing some new methods (see Sect. 4 and Sect. 5), it is proved that under the condition m>109\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m>\frac{10}{9}$$\end{document} and proper regularity hypotheses on the initial data, the corresponding initial-boundary problem possesses at least one global weak solution, which is uniformly bounded. In view of S is a tensor-valued chemotactic sensitivity, it is easy to see that the restriction on m here is optimal (see Remark 3.1) and thus answer the open problem left in Bellomo–Belloquid–Tao–Winkler (Bellomo, N., Belloquid, A., Tao, Y., Winkler, M.: toward a mathematical theory of Keller–Segel models of pattern formation in biological tissues. Math. Models Methods Appl. Sci. 25, 1663–1763 (2015)) and Tao–Winkler (Tao, Y., Winkler, M.: locally bounded global solutions in a three-dimensional chemotaxis-Stokes system with nonlinear diffusion. Ann. Inst. H. Poincaré Anal. Non Linéaire 30, 157–178 (2013)). This result significantly improves or extends previous results of several authors (see Remark 1.1).
引用
收藏
页码:243 / 288
页数:45
相关论文
共 98 条
[1]  
Bellomo N(2015)Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues Math. Models Methods Appl. Sci. 25 1663-1763
[2]  
Belloquid A(2016)Global classical small-data solutions for a 3D chemotaxis NavierC-Stokes system involving matrix-valued sensitivities Calc. Var. Partial Diff. Eqn. 55 55-107
[3]  
Tao Y(2014)Global existence and temporal decay in Keller-Segel models coupled to fluid equations Comm. Part. Diff. Eqns. 39 1205-1235
[4]  
Winkler M(2008)Finite-time blow-up in a quasilinear system of chemotaxis Nonlinearity 21 1057-1076
[5]  
Cao X(2010)Global solutions to the coupled chemotaxis- fluid equations Comm. Part. Diff. Eqns. 35 1635-1673
[6]  
Lankeit J(2010)Chemotaxis-fluid coupled model for swimming bacteria with nonlinear diffusion: global existence and asymptotic behavior Discrete Cont. Dyn. Syst. 28 1437-1453
[7]  
Chae M(1986)Solutions for semilinear parabolic equations in J. Diff. Eqns. 61 186-212
[8]  
Kang K(1981) and regularity of weak solutions of the Navier-Stokes system Proc. Jpn. Acad. S. 2 85-89
[9]  
Lee J(1997)The Stokes operator in Ann. Scuola Norm. Super. Pisa Cl. Sci. 24 633-683
[10]  
Cieślak T(2009) spaces J. Math. Biol. 58 183-217