Large-scale genome sequencing of mycorrhizal fungi provides insights into the early evolution of symbiotic traits

被引:0
作者
Shingo Miyauchi
Enikő Kiss
Alan Kuo
Elodie Drula
Annegret Kohler
Marisol Sánchez-García
Emmanuelle Morin
Bill Andreopoulos
Kerrie W. Barry
Gregory Bonito
Marc Buée
Akiko Carver
Cindy Chen
Nicolas Cichocki
Alicia Clum
David Culley
Pedro W. Crous
Laure Fauchery
Mariangela Girlanda
Richard D. Hayes
Zsófia Kéri
Kurt LaButti
Anna Lipzen
Vincent Lombard
Jon Magnuson
François Maillard
Claude Murat
Matt Nolan
Robin A. Ohm
Jasmyn Pangilinan
Maíra de Freitas Pereira
Silvia Perotto
Martina Peter
Stephanie Pfister
Robert Riley
Yaron Sitrit
J. Benjamin Stielow
Gergely Szöllősi
Lucia Žifčáková
Martina Štursová
Joseph W. Spatafora
Leho Tedersoo
Lu-Min Vaario
Akiyoshi Yamada
Mi Yan
Pengfei Wang
Jianping Xu
Tom Bruns
Petr Baldrian
Rytas Vilgalys
机构
[1] Université de Lorraine,Biology Department
[2] Institut national de recherche pour l’agriculture,Department of Life Sciences and Systems Biology
[3] l’alimentation et l’ environnement,Department Botany & Plant Pathology
[4] UMR Interactions Arbres/Microorganismes,Natural History Museum
[5] Centre INRAE Grand Est-Nancy,Department of Forest Sciences
[6] Synthetic and Systems Biology Unit,Department of Biology
[7] Biological Research Centre,Department of Plant and Microbial Biology
[8] US Department of Energy Joint Genome Institute,Department of Biology
[9] Lawrence Berkeley National Laboratory,Department of Biological Sciences
[10] INRAE,undefined
[11] USC1408 Architecture et Fonction des Macromolécules Biologiques,undefined
[12] Clark University,undefined
[13] Lasry Center for Bioscience,undefined
[14] Plant Soil and Microbial Sciences,undefined
[15] Michigan State University,undefined
[16] Chemical & Biological Processes Development Group,undefined
[17] Pacific Northwest National Laboratory,undefined
[18] Westerdijk Fungal Biodiversity Institute,undefined
[19] University of Torino,undefined
[20] Swiss Federal Institute for Forest,undefined
[21] Snow and Landscape Research WSL,undefined
[22] The Jacob Blaustein Institutes for Desert Research,undefined
[23] Bergman Campus,undefined
[24] Ben-Gurion University of The Negev,undefined
[25] Laboratory of Environmental Microbiology,undefined
[26] Institute of Microbiology of the Czech Academy of Sciences,undefined
[27] Oregon State University,undefined
[28] University of Tartu,undefined
[29] University of Helsinki,undefined
[30] Institute of Mountain Science,undefined
[31] Faculty of Agriculture,undefined
[32] Shinshu University,undefined
[33] Minami-minowa,undefined
[34] Kami-ina,undefined
[35] Department of Key Laboratory,undefined
[36] The 2nd Affiliated Hospital of Kunming Medical University,undefined
[37] McMaster University,undefined
[38] University of California – Berkeley,undefined
[39] Duke University,undefined
[40] Laboratoire de Recherche en Sciences Végétales,undefined
[41] Université de Toulouse,undefined
[42] CNRS,undefined
[43] UPS,undefined
[44] Architecture et Fonction des Macromolécules Biologiques (AFMB),undefined
[45] CNRS,undefined
[46] Aix-Marseille Univ.,undefined
[47] King Abdulaziz University,undefined
[48] Beijing Advanced Innovation Centre for Tree Breeding by Molecular Design (BAIC-TBMD),undefined
[49] Institute of Microbiology,undefined
[50] Beijing Forestry University,undefined
来源
Nature Communications | / 11卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Mycorrhizal fungi are mutualists that play crucial roles in nutrient acquisition in terrestrial ecosystems. Mycorrhizal symbioses arose repeatedly across multiple lineages of Mucoromycotina, Ascomycota, and Basidiomycota. Considerable variation exists in the capacity of mycorrhizal fungi to acquire carbon from soil organic matter. Here, we present a combined analysis of 135 fungal genomes from 73 saprotrophic, endophytic and pathogenic species, and 62 mycorrhizal species, including 29 new mycorrhizal genomes. This study samples ecologically dominant fungal guilds for which there were previously no symbiotic genomes available, including ectomycorrhizal Russulales, Thelephorales and Cantharellales. Our analyses show that transitions from saprotrophy to symbiosis involve (1) widespread losses of degrading enzymes acting on lignin and cellulose, (2) co-option of genes present in saprotrophic ancestors to fulfill new symbiotic functions, (3) diversification of novel, lineage-specific symbiosis-induced genes, (4) proliferation of transposable elements and (5) divergent genetic innovations underlying the convergent origins of the ectomycorrhizal guild.
引用
收藏
相关论文
共 165 条
[21]  
Tedersoo L(2019)Spatial separation of litter decomposition and mycorrhizal nitrogen uptake in a boreal forest Environ. Microbiol. 96 1931-1880
[22]  
Smith ME(2020)First evidences that the ectomycorrhizal fungus FEMS Microbiol. Ecol. 178 1857-1719
[23]  
Lutzoni F(2008) mobilizes nitrogen and carbon from saprotrophic fungus necromass New Phytol. 1 1715-1598
[24]  
Chang Y(2017)Functional convergence in the decomposition of fungal necromass in soil and wood Nat. Ecol. Evol. 94 1584-678
[25]  
Martin F(2019)Ectomycorrhizal fungi and the biotrophy–saprotrophy continuum Biol. Rev. 336 668-39
[26]  
Martin F(2012)Genome expansion and lineage-specific genetic innovations in the forest pathogenic fungi Science 222 33-970
[27]  
Kohler A(2019)Mycorrhizal types differ in ecophysiology and alter plant nutrition and soil processes New Phytol. 3 959-1719
[28]  
Peter M(2019)The Paleozoic origin of enzymatic lignin decomposition reconstructed from 31 fungal genomes Nat. Ecol. Evol. 223 261-7418
[29]  
Hess JI(2019)Comparative genomics of New Phytol. 33 1705-263
[30]  
Martino E(2016), Mol. Biol. Evol. 5 7409-467