Thermal Conductivity of the Toda Lattice with Conservative Noise

被引:0
作者
Alessandra Iacobucci
Frédéric Legoll
Stefano Olla
Gabriel Stoltz
机构
[1] Université de Paris Dauphine,CEREMADE, UMR
[2] Université Paris Est,CNRS 7534
[3] Université Paris Est,UR Navier, Projet MICMAC Ecole des Ponts ParisTech—INRIA
来源
Journal of Statistical Physics | 2010年 / 140卷
关键词
Thermal conductivity; Toda lattice; Anomalous heat transport; Fourier’s law; Nonequilibrium systems;
D O I
暂无
中图分类号
学科分类号
摘要
We study the thermal conductivity of the one dimensional Toda lattice perturbed by a stochastic dynamics preserving energy and momentum. The strength of the stochastic noise is controlled by a parameter γ. We show that heat transport is anomalous, and that the thermal conductivity diverges with the length n of the chain according to κ(n)∼nα, with 0<α≤1/2. In particular, the ballistic heat conduction of the unperturbed Toda chain is destroyed. Besides, the exponent α of the divergence depends on γ.
引用
收藏
页码:336 / 348
页数:12
相关论文
共 60 条
  • [1] Basile G.(2006)Momentum conserving model with anomalous thermal conductivity in low dimensional systems Phys. Rev. Lett. 96 67-98
  • [2] Bernardin C.(2009)Thermal conductivity for a momentum conserving model Commun. Math. Phys. 287 85-93
  • [3] Olla S.(2007)Anomalous transport and relaxation in classical one-dimensional models Eur. Phys. J. Spec. Topics 151 271-289
  • [4] Basile G.(2005)Fourier’s law for a microscopic model of heat conduction J. Stat. Phys. 121 1086-1088
  • [5] Bernardin C.(1970)Simulation of nonharmonic interactions in a crystal by self-consistent reservoirs Phys. Rev. A 1 783-813
  • [6] Olla S.(2004)Fourier’s law for a harmonic crystal with self-consistent stochastic reservoirs J. Stat. Phys. 116 1097-1119
  • [7] Basile G.(2009)Heat conduction and entropy production in anharmonic crystals with self-consistent stochastic reservoirs J. Stat. Phys. 134 495-500
  • [8] Delfini L.(1984)Stochastic boundary conditions for molecular dynamics simulations of ST2 water Chem. Phys. Lett. 105 1076-1092
  • [9] Lepri S.(2007)Existence and uniqueness of an invariant measure for a chain of oscillators in contact with two heat baths: Some examples Stoch. Process. Their Appl. 117 461-466
  • [10] Livi R.(2008)Breakdown of Fourier’s law in nanotube thermal conductors Phys. Rev. Lett. 101 473-511