Anhydrous Sol-Gel Synthesis of Titania-Doped Siloxane Polymer for Integrated Optics

被引:2
作者
Xinshi Luo
Congji Zha
Barry Luther-Davies
机构
[1] Australian National University,Laser Physics Centre, Research School of Physical Sciences and Engineering
来源
Journal of Sol-Gel Science and Technology | 2004年 / 32卷
关键词
anhydrous sol-gel process; waveguides; ormosil materials; optical characterisations;
D O I
暂无
中图分类号
学科分类号
摘要
Sol-gel synthesis of organic-inorganic hybrid materials for planar waveguides and devices has received growing interest due to its low-cost processing and good suitability for doping. Titania is an important optical dopant, but homogeneous incorporation of titania in silica is difficult to be achieved by the conventional sol-gel process (aqueous system) because of the significant difference between the hydrolysis rates of the precursors. In this paper, we report an anhydrous sol-gel process for synthesising titania-doped siloxane polymers. The process consists of a hydrolysis of 3-methacryloxypropyltrimethoxysilane (MPS) with boric acid under anhydrous conditions, and a condensation with dimethyldimethoxysilane (DMDMS), diphenyldimethoxysilane (DPhDMS) and titanium ethoxide (TET). Optical characterisations for the produced titania-doped polymer were performed, and results showed that TET doping is useful for reducing the OH concentration of the synthesised polymer and is also effective for improving the optical quality of spin coatings. DMDMS and DPhDMS are favourable in reducing the birefringence and in increasing the thermostability of the material, and the methacryl groups of MPS are UV-polymerizable, which is useful for low cost fabrication of waveguides by photolithographic process. The results of ellipsometry scanning measurements show that titania is homogeneously incorporated in the hybrid matrix, suggesting that the anhydrous sol-gel process is useful for preparation of UV-sensitive titania-doped siloxane polymers for optical applications.
引用
收藏
页码:297 / 301
页数:4
相关论文
共 31 条
[1]  
Miya T.(2000)undefined IEEE J. of Sel. Top. in Quantum Electron. 6 38-undefined
[2]  
Kang J.-W.(2002)undefined Optical Mater. 21 543-undefined
[3]  
Kim E.(2002)undefined Optics and Lasers in Eng. 38 361-undefined
[4]  
Kim J.-J.(2001)undefined Technol. 19 872-undefined
[5]  
Shi W.(1995)undefined Jpn. J. Appl. Phys. 34 6416-undefined
[6]  
Ding Y.J.(1996)undefined Proc. SPIE 2695 38-undefined
[7]  
Fang C.(1996)undefined Proc. SPIE 2695 92-undefined
[8]  
Pan Q.(undefined)undefined undefined undefined undefined-undefined
[9]  
Gu Q.(undefined)undefined undefined undefined undefined-undefined
[10]  
Kang J.-W.(undefined)undefined undefined undefined undefined-undefined