Existence and multiplicity of periodic solutions for the ordinary p-Laplacian systems

被引:3
作者
Liao K. [1 ]
Tang C.-L. [1 ]
机构
[1] School of Mathematics and Statistics, Southwest University
基金
中国国家自然科学基金;
关键词
P-Laplacian systems; Periodic solutions; Saddle Point Theorem; Three-critical-point Theorem;
D O I
10.1007/s12190-009-0364-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Some existence and multiplicity results are obtained for periodic solutions of the ordinary p-Laplacian systems: {(|u'(t)|p-2}u'(t))'=δ F(t,u(t)), a.e. t [0,T], u(0)-u(T)=u'(0)-u'(T)=0 by using the Saddle Point Theorem, the least action principle and the Three-critical-point Theorem. © 2009 Korean Society for Computational and Applied Mathematics.
引用
收藏
页码:395 / 406
页数:11
相关论文
共 23 条
[1]  
Bereanu C., Mawhin J., Periodic solutions of nonlinear perturbations of φ-Laplacians with possibly bounded φ, Nonlinear Anal., 68, 6, pp. 1668-1681, (2008)
[2]  
Bonanno G., Livrea R., Periodic solutions for a class of second-order Hamiltonian systems, Electron. J. Differ. Equ., 115, pp. 1-13, (2005)
[3]  
Bonanno G., Livrea R., Multiple periodic solutions for Hamiltonian systems with not coercive potential, J. Math. Anal. Appl., (2009)
[4]  
Brezis H., Nirenberg L., Remarks on finding critical points, Commun. Pure Appl. Math., 44, 89, pp. 939-963, (1991)
[5]  
Denkowski Z., Gasinski L., Papageorgiou N.S., Positive solutions for nonlinear periodic problems with the scalar p-Laplacian, Set-Valued Anal., 16, pp. 539-561, (2008)
[6]  
Faraci F., Three periodic solutions for a second order nonautonomous system, J. Nonlinear Convex Anal., 3, pp. 393-399, (2002)
[7]  
Gasiski L., Multiplicity theorems for periodic systems with a p-Laplacian-like operator, Nonlinear Anal., 67, 9, pp. 2632-2641, (2007)
[8]  
Ma S., Zhang Y., Existence of infinitely many periodic solutions for ordinary p-Laplacian systems, J. Math. Anal. Appl., 351, pp. 469-479, (2009)
[9]  
Mawhin J., Willem M., Critical Point Theory and Hamiltonian Systems, Applied Mathematical Sciences, 74, (1989)
[10]  
Pasca D., Periodic solutions of second-order differential inclusions systems with p-Laplacian, J. Math. Anal. Appl., 325, 1, pp. 90-100, (2007)