The G′G,1G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( \frac{\boldsymbol{G}^{\prime }}{\boldsymbol{G}},\frac{\boldsymbol{1}}{\boldsymbol{G}}\right)$$\end{document}-expansion method and its applications for constructing many new exact solutions of the higher-order nonlinear Schrödinger equation and the quantum Zakharov–Kuznetsov equation

被引:0
作者
Elsayed M. E. Zayed
Ayad M. Shahoot
Khaled A. E. Alurrfi
机构
[1] Zagazig University,Department of Mathematics, Faculty of Sciences
[2] Mergib University,Department of Physics, Faculty of Science
[3] Mergib University,Department of Mathematics, Faculty of Arts and Science
关键词
The ; -expansion method; Exact solutions; Soliton solutions; Periodic solutions; Higher-order nonlinear Schrödinger equations; Nonlinear quantum Zakharov–Kuznetsov equation;
D O I
10.1007/s11082-018-1337-z
中图分类号
学科分类号
摘要
In this article, we apply the two variable G′G,1G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( \frac{G^{\prime }}{G}, \frac{1}{G}\right)$$\end{document}-expansion method with the aid of symbolic computation to construct many new exact solutions for two higher-order nonlinear partial differential equatuions (PDEs) namely, the higher-order nonlinear Schrö dinger (NLS) equation with derivative non-kerr nonlinear terms describing pulse of the propagation beyond ultrashort range in optical communication systems and the higher-order nonlinear quantum Zakharov–Kuznetsov (QZK) equation which arises in quantum magneto plasma . Also, based on Liénard equation, we find many other diffrent new soliton solutions of the above NLS equation. Soliton solutions, periodic solutions, rational functions solutions and Jacobi elliptic functions solutions are obtained. Comparing our new solutions obtained in this article with the well-known solutions are given.
引用
收藏
相关论文
共 85 条
[11]  
Li LX(2015)Traveling wave solutions of nonlinear partial differential equations by using the first integral method Nonlinear Dyn. 81 277-282
[12]  
Li QE(2007)Optical solitons in nonlinear directional couplers by sine-cosine function method and Bernoulli’s equation approach Phys. Plasmas 14 082308-291
[13]  
Wang LM(2008)Soliton solutions to resonant nonlinear Schrödinger’s equation with time-dependent coefficients by trial solution approach Nonlinear Dyn. 53 281-130
[14]  
Liu S(2006)Solitary, explosive, and periodic solutions of the quantum Zakharov–Kuznetsov equation and its transverse instability Phys. Lett. A 356 124-950
[15]  
Fu Z(2007)The first integral method for solving some important nonlinear partial differential equations Chaos Solitons Fractals 31 943-447
[16]  
Liu S(2007)A new auxiliary equation and exact travelling wave solutions of nonlinear equations Phys. Lett. A 363 440-553
[17]  
Zhao Q(2011)Auxiliary equation method and new solutions of Klein–Gordon equations J. Math. Anal. Appl. 374 549-423
[18]  
Lu D(2008)Exact travelling wave solutions for four forms of nonlinear Klein–Gordon equations Phys. Lett. A 372 417-998
[19]  
Lu BHQ(1966)Exact solutions of the nonlinear Schrödinger equation by the first integral method Phys. Rev. Lett. 17 996-986
[20]  
Zhang HQ(2007)The Comput. Math. Appl. 54 966-103