The G′G,1G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( \frac{\boldsymbol{G}^{\prime }}{\boldsymbol{G}},\frac{\boldsymbol{1}}{\boldsymbol{G}}\right)$$\end{document}-expansion method and its applications for constructing many new exact solutions of the higher-order nonlinear Schrödinger equation and the quantum Zakharov–Kuznetsov equation

被引:0
作者
Elsayed M. E. Zayed
Ayad M. Shahoot
Khaled A. E. Alurrfi
机构
[1] Zagazig University,Department of Mathematics, Faculty of Sciences
[2] Mergib University,Department of Physics, Faculty of Science
[3] Mergib University,Department of Mathematics, Faculty of Arts and Science
关键词
The ; -expansion method; Exact solutions; Soliton solutions; Periodic solutions; Higher-order nonlinear Schrödinger equations; Nonlinear quantum Zakharov–Kuznetsov equation;
D O I
10.1007/s11082-018-1337-z
中图分类号
学科分类号
摘要
In this article, we apply the two variable G′G,1G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( \frac{G^{\prime }}{G}, \frac{1}{G}\right)$$\end{document}-expansion method with the aid of symbolic computation to construct many new exact solutions for two higher-order nonlinear partial differential equatuions (PDEs) namely, the higher-order nonlinear Schrö dinger (NLS) equation with derivative non-kerr nonlinear terms describing pulse of the propagation beyond ultrashort range in optical communication systems and the higher-order nonlinear quantum Zakharov–Kuznetsov (QZK) equation which arises in quantum magneto plasma . Also, based on Liénard equation, we find many other diffrent new soliton solutions of the above NLS equation. Soliton solutions, periodic solutions, rational functions solutions and Jacobi elliptic functions solutions are obtained. Comparing our new solutions obtained in this article with the well-known solutions are given.
引用
收藏
相关论文
共 85 条
  • [1] Bekir A(2008)Application of the Phys. Lett. A 372 3400-3406
  • [2] Bekir A(2012) -expansion method for nonlinear evolution equations Pramana J. Phys. 79 3-17
  • [3] Unsal O(2005)Analytic treatment of nonlinear evolution equations using first integral method Chaos Solitons Fractals 24 745-757
  • [4] Chen Y(2016)Extended Jacobi elliptic function rational expansion method and abundant families of Jacobi elliptic function solutions to (1+1) -dimensional dispersive long wave equation Nonlinear Dyn. 84 669-676
  • [5] Wang Q(2006)Solitons and other solutions to Boussinesq equation with power law nonlinearity and dual dispersion Chaos Solitons Fractals 30 700-708
  • [6] Ekici M(2010)Exp-function method for nonlinear wave equations Appl. Math J. Chin. Univ. 25 454-462
  • [7] Mirzazadeh M(2001)The Phys. Lett. A 289 69-74
  • [8] Eslami M(2005)-expansion method and its application to traveling wave solutions of the Zakharov equations Chaos Solitons Fractals 24 1373-1385
  • [9] He JH(2010)Jacobi elliptic function expansion method and periodic wave solutions of nonlinear wave equations Appl. Math. Comput. 216 1329-1336
  • [10] Wu XH(2015)Jacobi elliptic function solutions for two variant Boussinesq equations Nonlinear Dyn. 81 1933-1949