On a class of secant-like methods for solving nonlinear equations

被引:0
|
作者
Ioannis K. Argyros
机构
[1] Cameron University,Department of Mathematical Sciences
来源
Numerical Algorithms | 2010年 / 54卷
关键词
Secant-like methods; Banach space; Majorizing sequence; Fréchet-derivative; Divided difference; Convergence domain; Newton’s method; Secant method; Nonlinear integral equation of Chandrasekhar-type; 65K10; 65G99; 65J99; 49M15; 49J53; 47J20; 47H04;
D O I
暂无
中图分类号
学科分类号
摘要
We provide a semilocal convergence analysis for a certain class of secant-like methods considered also in Argyros (J Math Anal Appl 298:374–397, 2004, 2007), Potra (Libertas Mathematica 5:71–84, 1985), in order to approximate a locally unique solution of an equation in a Banach space. Using a combination of Lipschitz and center-Lipschitz conditions for the computation of the upper bounds on the inverses of the linear operators involved, instead of only Lipschitz conditions (Potra, Libertas Mathematica 5:71–84, 1985), we provide an analysis with the following advantages over the work in Potra (Libertas Mathematica 5:71–84, 1985) which improved the works in Bosarge and Falb (J Optim Theory Appl 4:156–166, 1969, Numer Math 14:264–286, 1970), Dennis (SIAM J Numer Anal 6(3):493–507, 1969, 1971), Kornstaedt (1975), Larsonen (Ann Acad Sci Fenn, A 450:1–10, 1969), Potra (L’Analyse Numérique et la Théorie de l’Approximation 8(2):203–214, 1979, Aplikace Mathematiky 26:111–120, 1981, 1982, Libertas Mathematica 5:71–84, 1985), Potra and Pták (Math Scand 46:236–250, 1980, Numer Func Anal Optim 2(1):107–120, 1980), Schmidt (Period Math Hung 9(3):241–247, 1978), Schmidt and Schwetlick (Computing 3:215–226, 1968), Traub (1964), Wolfe (Numer Math 31:153–174, 1978): larger convergence domain; weaker sufficient convergence conditions, finer error bounds on the distances involved, and a more precise information on the location of the solution. Numerical examples further validating the results are also provided.
引用
收藏
页码:485 / 501
页数:16
相关论文
共 50 条
  • [31] On Newton-Like Methods for Solving Nonlinear Equations
    Kou Jisheng
    Liu Dingyou
    Li Yitian
    He Julin
    GEO-SPATIAL INFORMATION SCIENCE, 2006, 9 (01) : 76 - 78
  • [32] On Newton-Like Methods for Solving Nonlinear Equations
    LIU Dingyou LI Yitian HE Julin KOU Jisheng
    Geo-Spatial Information Science, 2006, (01) : 76 - 78
  • [33] Directional Secant-Type Methods for Solving Equations
    Ioannis K. Argyros
    Saïd Hilout
    Journal of Optimization Theory and Applications, 2013, 157 : 462 - 485
  • [34] Directional Secant-Type Methods for Solving Equations
    Argyros, Ioannis K.
    Hilout, Said
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2013, 157 (02) : 462 - 485
  • [35] SECANT ACCELERATION OF SEQUENTIAL RESIDUAL METHODS FOR SOLVING LARGE-SCALE NONLINEAR SYSTEMS OF EQUATIONS
    Birgin, Ernesto G.
    Martinez, J. M.
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2022, 60 (06) : 3145 - 3180
  • [36] ON GENERALIZED HALLEY-LIKE METHODS FOR SOLVING NONLINEAR EQUATIONS
    Petkovic, Miodrag S.
    Petkovic, Ljiljana D.
    Neta, Beny
    APPLICABLE ANALYSIS AND DISCRETE MATHEMATICS, 2019, 13 (02) : 399 - 422
  • [37] On developing an optimal Jarratt-like class for solving nonlinear equations
    Attary, Maryam
    Agarwal, Praveen
    Italian Journal of Pure and Applied Mathematics, 2020, 43 : 523 - 530
  • [38] A new family of Secant-like method with super-linear convergence
    Kanwar, V
    Sharma, JR
    Mamta
    APPLIED MATHEMATICS AND COMPUTATION, 2005, 171 (01) : 104 - 107
  • [39] On developing an optimal Jarratt-like class for solving nonlinear equations
    Attary, Maryam
    Agarwal, Praveen
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2020, (43): : 523 - 530
  • [40] On a general class of optimal order multipoint methods for solving nonlinear equations
    Sharma, Janak Raj
    Argyros, Ioannis K.
    Kumar, Deepak
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 449 (02) : 994 - 1014