On a class of secant-like methods for solving nonlinear equations

被引:0
|
作者
Ioannis K. Argyros
机构
[1] Cameron University,Department of Mathematical Sciences
来源
Numerical Algorithms | 2010年 / 54卷
关键词
Secant-like methods; Banach space; Majorizing sequence; Fréchet-derivative; Divided difference; Convergence domain; Newton’s method; Secant method; Nonlinear integral equation of Chandrasekhar-type; 65K10; 65G99; 65J99; 49M15; 49J53; 47J20; 47H04;
D O I
暂无
中图分类号
学科分类号
摘要
We provide a semilocal convergence analysis for a certain class of secant-like methods considered also in Argyros (J Math Anal Appl 298:374–397, 2004, 2007), Potra (Libertas Mathematica 5:71–84, 1985), in order to approximate a locally unique solution of an equation in a Banach space. Using a combination of Lipschitz and center-Lipschitz conditions for the computation of the upper bounds on the inverses of the linear operators involved, instead of only Lipschitz conditions (Potra, Libertas Mathematica 5:71–84, 1985), we provide an analysis with the following advantages over the work in Potra (Libertas Mathematica 5:71–84, 1985) which improved the works in Bosarge and Falb (J Optim Theory Appl 4:156–166, 1969, Numer Math 14:264–286, 1970), Dennis (SIAM J Numer Anal 6(3):493–507, 1969, 1971), Kornstaedt (1975), Larsonen (Ann Acad Sci Fenn, A 450:1–10, 1969), Potra (L’Analyse Numérique et la Théorie de l’Approximation 8(2):203–214, 1979, Aplikace Mathematiky 26:111–120, 1981, 1982, Libertas Mathematica 5:71–84, 1985), Potra and Pták (Math Scand 46:236–250, 1980, Numer Func Anal Optim 2(1):107–120, 1980), Schmidt (Period Math Hung 9(3):241–247, 1978), Schmidt and Schwetlick (Computing 3:215–226, 1968), Traub (1964), Wolfe (Numer Math 31:153–174, 1978): larger convergence domain; weaker sufficient convergence conditions, finer error bounds on the distances involved, and a more precise information on the location of the solution. Numerical examples further validating the results are also provided.
引用
收藏
页码:485 / 501
页数:16
相关论文
共 50 条
  • [1] On a class of secant-like methods for solving nonlinear equations
    Argyros, Ioannis K.
    NUMERICAL ALGORITHMS, 2010, 54 (04) : 485 - 501
  • [2] A NEW CLASS OF SECANT-LIKE METHODS FOR SOLVING NONLINEAR SYSTEMS OF EQUATIONS
    Ezquerro, Jose A.
    Grau, Angela
    Grau-Sanchez, Miquel
    Hernandez-Veron, Miguel A.
    COMMUNICATIONS IN APPLIED MATHEMATICS AND COMPUTATIONAL SCIENCE, 2014, 9 (02) : 201 - 213
  • [3] Expanding the applicability of secant-like methods for solving nonlinear equations
    Argyros, I. K.
    Ezquerro, J. A.
    Hernandez, M. A.
    Hilout, S.
    Romero, N.
    Velasco, A. I.
    CARPATHIAN JOURNAL OF MATHEMATICS, 2015, 31 (01) : 11 - 30
  • [4] Secant-like methods for solving nonlinear integral equations of the Hammerstein type
    Hernández, MA
    Rubio, MJ
    Ezquerro, JA
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2000, 115 (1-2) : 245 - 254
  • [5] On convergence of a new secant-like method for solving nonlinear equations
    Ren, Hongmin
    Wu, Qingbiao
    Bi, Weihong
    APPLIED MATHEMATICS AND COMPUTATION, 2010, 217 (02) : 583 - 589
  • [6] A new modified secant-like method for solving nonlinear equations
    Wang, Xiuhua
    Kou, Jisheng
    Gu, Chuanqing
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2010, 60 (06) : 1633 - 1638
  • [7] Secant-like methods for solving nonlinear models with applications to chemistry
    Á. Alberto Magreñán
    Ioannis K. Argyros
    Lara Orcos
    Juan Antonio Sicilia
    Journal of Mathematical Chemistry, 2018, 56 : 1935 - 1957
  • [8] Secant-like methods for solving nonlinear models with applications to chemistry
    Alberto Magrenan, A.
    Argyros, Ioannis K.
    Orcos, Lara
    Antonio Sicilia, Juan
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2018, 56 (07) : 1935 - 1957
  • [9] ON A SECANT-LIKE METHOD FOR SOLVING GENERALIZED EQUATIONS
    Argyros, Ioannis K.
    Hilout, Said
    MATHEMATICA BOHEMICA, 2008, 133 (03): : 313 - 320
  • [10] SECANT-LIKE METHOD FOR SOLVING GENERALIZED EQUATIONS
    Argyros, Ioannis K.
    Hilout, Said
    METHODS AND APPLICATIONS OF ANALYSIS, 2009, 16 (04) : 469 - 478