Asymptotic Behaviour for a Nonlinear Schrödinger Equation in Domains with Moving Boundaries

被引:0
作者
Vanilde Bisognin
Celene Buriol
Marcio V. Ferreira
Mauricio Sepúlveda
Octavio Vera
机构
[1] Centro Universitario Franciscano,Departamento de Matemática
[2] Universidade Federal de Santa Maria,CI²MA and Departamento de Ingeniería Matemática
[3] Universidad de Concepción,Departamento de Matemática
[4] Universidad del Bío-Bío,undefined
来源
Acta Applicandae Mathematicae | 2013年 / 125卷
关键词
Schrödinger equation; Stabilization; Moving boundary; 35K60; 93C20;
D O I
暂无
中图分类号
学科分类号
摘要
We consider a nonlinear Schrödinger equation in a time-dependent domain Qτ of ℝ2 given by \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u_{\tau} - i u_{\varepsilon\varepsilon} + |u|^{2} u + \gamma v=0. $$\end{document} We prove the well-posedness of the above model and analyze the behaviour of the solution as t→+∞. We consider two situations: the conservative case (γ=0) and the dissipative case (γ>0). In both situations the existence of solutions are proved using the Galerkin method and the stabilization of solutions are obtained considering multiplier techniques.
引用
收藏
页码:159 / 172
页数:13
相关论文
共 29 条
  • [1] Antunes G.O.(1998)Schrödinger equations in non cylindrical domains-exact controllability Differ. Integral Equ. 11 755-770
  • [2] Silva M.D.G.(1984)Nonexistence of asymptotically free solutions for a nonlinear Schrödinger equation J. Math. Phys. 25 3270-3273
  • [3] Apolaya R.F.(1997)Abstract Schrödinger type differential equations with variable domain J. Math. Anal. Appl. 211 84-105
  • [4] Barab J.E.(2008)Coupled system of Korteweg de Vries equations type in domains with moving boundaries J. Comput. Appl. Math. 220 290-321
  • [5] Bernardi M.L.(2010)Qualitative aspects for the cubic nonlinear Schrödinger equations with localized damping: exponential and polynomial stabilization J. Differ. Equ. 248 2955-2971
  • [6] Bonfanti G.(2007)KDV equation in domains with moving boundaries J. Math. Anal. Appl. 48 157-172
  • [7] Lutteroti F.(1999)Asymptotic behaviour for the nonlinear beam equation in a time-dependent domain Rend. Mat. Ser. VII 19 177-193
  • [8] Bisognin E.(1988)Finite dimensional behavior damped driven Schrödinger equations Ann. Inst. Henri Poincaré 5 365-405
  • [9] Bisognin V.(1979)On a class of nonlinear Schrödinger equations I. The Cauchy problem. General case J. Funct. Anal. 32 1-32
  • [10] Sepúlveda M.(1993)Small solutions to nonlinear Schrödinger equations Ann. Inst. Henri Poincaré 10 255-288