DLSFEM–PML formulation for the steady-state response of a taut string on visco-elastic support under moving load

被引:0
|
作者
Diego Froio
Egidio Rizzi
Fernando M. F. Simões
António Pinto da Costa
机构
[1] Università degli Studi di Bergamo,Dipartimento di Ingegneria e Scienze Applicate
[2] Universidade de Lisboa,CERIS, Instituto Superior Técnico
来源
Meccanica | 2020年 / 55卷
关键词
Discontinuous Least-Squares Finite Element Method (DLSFEM); Perfectly Matched Layer (PML); Taut string on visco-elastic support; Moving load; Steady-state response;
D O I
暂无
中图分类号
学科分类号
摘要
The numerical solution of the steady-state response of a uniform taut string on visco-elastic support under a concentrated transverse moving load is addressed. By recasting the governing second-order differential equation as a first-order system in convected coordinate, a local Discontinuous Least-Squares Finite Element Method (DLSFEM) formulation is developed within a complex-valued function space, to overcome numerical instabilities linked to high-velocity loads and handle far-field conditions through an effective Perfectly Matched Layer (PML) implementation. As an original advancement of the present DLSFEM–PML formulation, a coercivity theorem is proven for any first-order ordinary differential system and uniform error estimates are established for the finite element approximation for bothL2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document}- andH1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^1$$\end{document}-norms. Thus, the formulation newly joins a DLSFEM approach and a PML implementation, for solving the above-mentioned moving load problem. Numerical examples illustrate feasibility and accuracy of the method in reproducing the expected trends of solution and a priori error estimates.
引用
收藏
页码:765 / 790
页数:25
相关论文
共 48 条