Meromorphic Solutions of Certain Types of Non-linear Differential Equations

被引:1
作者
Huifang Liu
Zhiqiang Mao
机构
[1] Jiangxi Normal University,College of Mathematics and Information Science
[2] Jiangxi Science and Technology Normal University,School of Mathematics and Computer
来源
Computational Methods and Function Theory | 2020年 / 20卷
关键词
Nevanlinna theory; Differential polynomial; Differential equation; Meromorphic solution; 34M05; 30D35;
D O I
暂无
中图分类号
学科分类号
摘要
Let p1,p2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_1, p_2$$\end{document} and α1,α2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha _1, \alpha _2$$\end{document} be non-zero constants, and Pd(z,f)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_d(z, f)$$\end{document} be a differential polynomial in f of degree d. Li obtained the forms of meromorphic solutions with few poles of the non-linear differential equations fn+Pd(z,f)=p1eα1z+p2eα2z\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f^n+P_d(z, f)=p_1e^{\alpha _1 z}+p_2e^{\alpha _2 z}$$\end{document} provided α1≠α2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha _1\ne \alpha _2$$\end{document} and d≤n-2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\le n-2$$\end{document}. In this paper, given d=n-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d=n-1$$\end{document}, we find the forms of meromorphic solutions with few poles of the above equations under some restrictions on α1,α2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha _1, \alpha _2$$\end{document}. Some examples are given to illustrate our results.
引用
收藏
页码:319 / 332
页数:13
相关论文
共 15 条
[1]  
Clunie J(1962)On integral and meromorphic functions J. Lond. Math. Soc. 37 17-27
[2]  
Chen ZX(2014)On entire solutions of certain type of differential–difference equations Taiwan. J. Math. 18 677-685
[3]  
Yang CC(2008)Entire solutions of certain type of differential equations J. Math. Anal. Appl. 344 253-259
[4]  
Li P(2011)Entire solutions of certain type of differential equations II J. Math. Anal. Appl. 375 310-319
[5]  
Li P(2007)Entire functions that share a small function with its derivative J. Math. Anal. Appl. 328 743-751
[6]  
Li P(2013)On meromorphic solutions of certain type of non-linear differential equations Ann. Acad. Sci. Fenn. Math. 38 581-593
[7]  
Wang WJ(2017)On meromorphic solutions of a certain type of nonlinear differential equations Acta Math. Sin. 33 1597-1608
[8]  
Liao LW(2004)On the transcendental solutions of a certain type of nonlinear differential equations Arch. Math. 82 442-448
[9]  
Yang CC(undefined)undefined undefined undefined undefined-undefined
[10]  
Zhang JJ(undefined)undefined undefined undefined undefined-undefined