A three-variables cokriging method to estimate bare-surface soil moisture using multi-temporal, VV-polarization synthetic-aperture radar data

被引:7
作者
Zeng, Ling [1 ]
Shi, Qingyun [2 ]
Guo, Ke [1 ]
Xie, Shuyun [3 ]
Herrin, Jason Scott [4 ]
机构
[1] Chengdu Univ Technol, Geomath Key Lab Sichuan Prov, Chengdu 610059, Peoples R China
[2] Chengdu Univ Technol, State Key Lab Geohazard Prevent & Geoenvironm Pro, Chengdu 610059, Peoples R China
[3] China Univ Geosci, State Key Lab Geol Proc & Mineral Resources GPMR, Fac Earth Sci, Wuhan 430074, Peoples R China
[4] Nanyang Technol Univ, Facil Anal Characterizat Testing Simulat, Singapore 639798, Singapore
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
Geostatistics; Remote sensing; Soil moisture; Sentinel-1; Backscatter coefficient; MICROWAVE BACKSCATTER DEPENDENCE; INTEGRAL-EQUATION MODEL; SAR DATA; C-BAND; SEMIEMPIRICAL CALIBRATION; EMPIRICAL-MODEL; ROUGHNESS; RETRIEVAL; INFORMATION; IMAGES;
D O I
10.1007/s10040-020-02177-z
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
A cokriging model using three variables is developed to estimate bare-surface soil moisture content based on multi-temporal synthetic-aperture radar (SAR) data. This model utilizes cross-semivariogram function to take into account spatially varied correlation among multiple variables. Here, five sentinel-1 SAR scenes were acquired on different dates using the interferometric wide-swath (IW) mode and a mean incidence angle of 39.02 degrees to build the backscatter temporal-ratio in VV polarization. This algorithm is generally based on the assumption of contributions of soil moisture and surface roughness to the backscattering coefficient under the given radar configurations. In this study, soil moisture is the target variable, and the surface roughness and backscatter temporal-ratio in VV polarization are the auxiliary variables. A cross-semivariogram relationship is formulated among those three spatial variables; then ordinary cokriging is used, based on that cross-semivariogram formula, to estimate the spatial distribution of bare soil moisture content. The root mean square error (RMSE) of soil-moisture retrieval ranges from 2.62 to 2.66 vol%. The new empirical model described in this paper will provide new insights into the study of soil environments.
引用
收藏
页码:2129 / 2139
页数:11
相关论文
共 66 条
  • [51] Temporal stability of soil moisture and radar backscatter observed by the advanced Synthetic Aperture Radar (ASAR)
    Wagner, Wolfgang
    Pathe, Carsten
    Doubkova, Marcela
    Sabel, Daniel
    Bartsch, Annett
    Hasenauer, Stefan
    Bloschl, Guenter
    Scipal, Klaus
    Martinez-Fernandez, Jose
    Loew, Alexander
    [J]. SENSORS, 2008, 8 (02) : 1174 - 1197
  • [52] Numerical simulation methods for rough surface scattering
    Warnick, Karl F.
    Chew, Weng Cho
    [J]. Waves Random Media, 2001, 11 (01):
  • [53] Scaling of soil moisture:: A hydrologic perspective
    Western, AW
    Grayson, RB
    Blöschl, G
    [J]. ANNUAL REVIEW OF EARTH AND PLANETARY SCIENCES, 2002, 30 : 149 - 180
  • [54] Retrieving near-surface soil moisture from microwave radiometric observations: current status and future plans
    Wigneron, JP
    Calvet, JC
    Pellarin, T
    Van de Griend, AA
    Berger, M
    Ferrazzoli, P
    [J]. REMOTE SENSING OF ENVIRONMENT, 2003, 85 (04) : 489 - 506
  • [55] Simple alternatives for Box-Cox transformations
    Withers, Christopher S.
    Nadarajah, Saralees
    [J]. METRIKA, 2014, 77 (02) : 297 - 315
  • [56] A transition model for the reflection coefficient in surface scattering
    Wu, TD
    Chen, KS
    Shi, JC
    Fung, AK
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2001, 39 (09): : 2040 - 2050
  • [57] A Machine Learning Based Reconstruction Method for Satellite Remote Sensing of Soil Moisture Images with In Situ Observations
    Xing, Chenjie
    Chen, Nengcheng
    Zhang, Xiang
    Gong, Jianya
    [J]. REMOTE SENSING, 2017, 9 (05)
  • [58] Prediction of soil heavy metal distribution using Spatiotemporal Kriging with trend model
    Yang, Yong
    Wu, Jiaping
    Christakos, George
    [J]. ECOLOGICAL INDICATORS, 2015, 56 : 125 - 133
  • [59] Nonparametric cross-covariance modeling as exemplified by soil heavy metal concentrations from the Swiss Jura
    Yao, TT
    [J]. GEODERMA, 1999, 88 (1-2) : 13 - 38
  • [60] ESTIMATING SOIL-WATER CONTENT USING COKRIGING
    YATES, SR
    WARRICK, AW
    [J]. SOIL SCIENCE SOCIETY OF AMERICA JOURNAL, 1987, 51 (01) : 23 - 30