A three-variables cokriging method to estimate bare-surface soil moisture using multi-temporal, VV-polarization synthetic-aperture radar data

被引:7
作者
Zeng, Ling [1 ]
Shi, Qingyun [2 ]
Guo, Ke [1 ]
Xie, Shuyun [3 ]
Herrin, Jason Scott [4 ]
机构
[1] Chengdu Univ Technol, Geomath Key Lab Sichuan Prov, Chengdu 610059, Peoples R China
[2] Chengdu Univ Technol, State Key Lab Geohazard Prevent & Geoenvironm Pro, Chengdu 610059, Peoples R China
[3] China Univ Geosci, State Key Lab Geol Proc & Mineral Resources GPMR, Fac Earth Sci, Wuhan 430074, Peoples R China
[4] Nanyang Technol Univ, Facil Anal Characterizat Testing Simulat, Singapore 639798, Singapore
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
Geostatistics; Remote sensing; Soil moisture; Sentinel-1; Backscatter coefficient; MICROWAVE BACKSCATTER DEPENDENCE; INTEGRAL-EQUATION MODEL; SAR DATA; C-BAND; SEMIEMPIRICAL CALIBRATION; EMPIRICAL-MODEL; ROUGHNESS; RETRIEVAL; INFORMATION; IMAGES;
D O I
10.1007/s10040-020-02177-z
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
A cokriging model using three variables is developed to estimate bare-surface soil moisture content based on multi-temporal synthetic-aperture radar (SAR) data. This model utilizes cross-semivariogram function to take into account spatially varied correlation among multiple variables. Here, five sentinel-1 SAR scenes were acquired on different dates using the interferometric wide-swath (IW) mode and a mean incidence angle of 39.02 degrees to build the backscatter temporal-ratio in VV polarization. This algorithm is generally based on the assumption of contributions of soil moisture and surface roughness to the backscattering coefficient under the given radar configurations. In this study, soil moisture is the target variable, and the surface roughness and backscatter temporal-ratio in VV polarization are the auxiliary variables. A cross-semivariogram relationship is formulated among those three spatial variables; then ordinary cokriging is used, based on that cross-semivariogram formula, to estimate the spatial distribution of bare soil moisture content. The root mean square error (RMSE) of soil-moisture retrieval ranges from 2.62 to 2.66 vol%. The new empirical model described in this paper will provide new insights into the study of soil environments.
引用
收藏
页码:2129 / 2139
页数:11
相关论文
共 66 条
  • [1] [Anonymous], 1982, RADAR REMOTE SENSING
  • [2] [Anonymous], 2017, SENSORS BASEL, DOI DOI 10.3390/S17061390
  • [3] Calibration of the Integral Equation Model for SAR data in C-band and HH and VV polarizations
    Baghdadi, N
    Holah, N
    Zribi, M
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 2006, 27 (04) : 805 - 816
  • [4] Semi-empirical calibration of the IEM backscattering model using radar images and moisture and roughness field measurements
    Baghdadi, N
    Gherboudj, I
    Zribi, M
    Sahebi, M
    King, C
    Bonn, F
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 2004, 25 (18) : 3593 - 3623
  • [5] A New Empirical Model for Radar Scattering from Bare Soil Surfaces
    Baghdadi, Nicolas
    Choker, Mohammad
    Zribi, Mehrez
    El Hajj, Mohammad
    Paloscia, Simonetta
    Verhoest, Niko E. C.
    Lievens, Hans
    Baup, Frederic
    Mattia, Francesco
    [J]. REMOTE SENSING, 2016, 8 (11):
  • [6] Semiempirical Calibration of the Integral Equation Model for SAR Data in C-Band and Cross Polarization Using Radar Images and Field Measurements
    Baghdadi, Nicolas
    Abou Chaaya, Jad
    Zribi, Mehrez
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2011, 8 (01) : 14 - 18
  • [7] Dense Temporal Series of C- and L-band SAR Data for Soil Moisture Retrieval Over Agricultural Crops
    Balenzano, Anna
    Mattia, Francesco
    Satalino, Giuseppe
    Davidson, Malcolm W. J.
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2011, 4 (02) : 439 - 450
  • [8] Spatial-temporal variability of soil moisture and its estimation across scales
    Brocca, L.
    Melone, F.
    Moramarco, T.
    Morbidelli, R.
    [J]. WATER RESOURCES RESEARCH, 2010, 46
  • [9] Root mean square error (RMSE) or mean absolute error (MAE)? - Arguments against avoiding RMSE in the literature
    Chai, T.
    Draxler, R. R.
    [J]. GEOSCIENTIFIC MODEL DEVELOPMENT, 2014, 7 (03) : 1247 - 1250
  • [10] Emission of rough surfaces calculated by the integral equation method with comparison to three-dimensional moment method Simulations
    Chen, KS
    Wu, TD
    Tsang, L
    Li, Q
    Shi, JC
    Fung, AK
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2003, 41 (01): : 90 - 101