Some properties of algebraic difference equations of first order

被引:0
|
作者
Yong Liu
机构
[1] Shaoxing College of Arts and Sciences,Department of Mathematics
来源
Advances in Difference Equations | / 2017卷
关键词
meromorphic functions; difference equations; value distribution; finite order; 30D35; 39B12;
D O I
暂无
中图分类号
学科分类号
摘要
We prove that if g(z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$g(z)$\end{document} is a finite-order transcendental meromorphic solution of (△cg(z))2=A(z)g(z)g(z+c)+B(z),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\bigl(\triangle_{c} g(z)\bigr)^{2}=A(z)g(z)g(z+c)+B(z), $$\end{document} where A(z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$A(z)$\end{document} and B(z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$B(z)$\end{document} are polynomials such that degA(z)>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\deg A(z)>0$\end{document}, then 1≤ρ(g)=max{λ(g),λ(1g)}.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1 \leq\rho(g)=\max\biggl\{ \lambda(g), \lambda\biggl(\frac{1}{g}\biggr) \biggr\} . $$\end{document}
引用
收藏
相关论文
共 50 条