Covariance-based metric model for cross-domain few-shot classification and learning-to-generalization

被引:0
作者
Nadeem Yousuf Khanday
Shabir Ahmad Sofi
机构
[1] N.I.T Srinagar,Department of Information Technology
来源
Applied Intelligence | 2023年 / 53卷
关键词
Machine learning; Few-shot learning; Meta-learning; Cross-domain; Classification;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:27374 / 27391
页数:17
相关论文
共 22 条
[1]  
Khanday NY(2021)Taxonomy, state-of-the-art, challenges and applications of visual understanding: a review Computer Science Review 40 1-34
[2]  
Sofi SA(2020)Generalizing from a few examples: A survey on few-shot learning ACM Comput Surv (csur) 53 1345-1359
[3]  
Wang Y(2009)A survey on transfer learning IEEE Trans Knowl Data Eng 22 1249-75
[4]  
Yao Q(2018)Ensemble learning: A survey Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery 8 41-5869
[5]  
Kwok JT(1997)Multitask learning Mach Learn 28 5858-604
[6]  
Ni LM(2017)Smart augmentation learning an optimal data augmentation strategy IEEE Access 5 66-undefined
[7]  
Pan SJ(2018)Rendergan: Generating realistic labeled data Frontiers in Robotics and AI 5 592-undefined
[8]  
Yang Q(2022)Few-shot driver identification via meta-learning Expert Syst Appl 203 undefined-undefined
[9]  
Sagi O(2022)Coarse-to-fine few-shot classification with deep metric learning Inf Sci 610 undefined-undefined
[10]  
Rokach L(undefined)undefined undefined undefined undefined-undefined