Bilipschitz embedding of self-similar sets

被引:0
作者
Juan Deng
Zhi-ying Wen
Ying Xiong
Li-Feng Xi
机构
[1] Tsinghua University,Department of Mathematics
[2] South China University of Technology,Department of Mathematics
[3] Zhejiangwanli University Ningbo,Institute of Mathematics
来源
Journal d'Analyse Mathématique | 2011年 / 114卷
关键词
Hausdorff Dimension; Hausdorff Measure; Transitive Graph; Strong Separation Condition; Bilipschitz Equivalent;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we prove that each self-similar set satisfying the strong separation condition can be bilipschitz embedded into each self-similar set with larger Hausdorff dimension. A bilipschitz embedding between two self-similar sets of the same Hausdorff dimension both satisfying the strong separation condition is only possible if the two sets are bilipschitz equivalent.
引用
收藏
页码:63 / 97
页数:34
相关论文
共 34 条
[1]  
Cooper D.(1988)On the shape of Cantor sets J. Differential Geom. 28 203-221
[2]  
Pignataro T.(1989)Dimensions and measures of quasi self-similar sets Proc. Amer. Math. Soc. 106 543-554
[3]  
Falconer K. J.(1989)Classification of quasi-circles by Hausdorff dimension Nonlinearity 2 489-493
[4]  
Falconer K. J.(1992)On the Lipschitz equivalence of Cantor sets Mathematika 39 223-233
[5]  
Marsh D. T.(1998)A rigidity theorem for the solvable Baumslag-Solitar groups Invent. Math. 131 419-451
[6]  
Falconer K. J.(1981)Fractals and self-similarity Indiana Univ. Math. J. 30 713-747
[7]  
Marsh D. T.(1997)Projecting the one-dimensional Sierpinski gasket Israel J.Math. 97 221-238
[8]  
Farb B.(2010)Lipschitz equivalence of subsets of self-conformal sets Nonlinearity 23 875-882
[9]  
Mosher L.(2009)Ahlfors-David regular sets and bilipschitz maps Ann. Acad. Sci. Fenn. Math. 34 487-502
[10]  
Hutchinson J. E.(1946)Additive functions of intervals and Hausdorff measure Proc. Cambridge Philos. Soc. 42 15-23