Half-integral weight modular forms and modular forms for Weil representations

被引:0
作者
Yichao Zhang
机构
[1] Harbin Institute of Technology,Institute for Advanced Study in Mathematics and Department of Mathematics
来源
manuscripta mathematica | 2020年 / 163卷
关键词
Primary: 11F37; 11F30; 11F27;
D O I
暂无
中图分类号
学科分类号
摘要
We establish an isomorphism between certain complex-valued and vector-valued modular form spaces of half-integral weight, generalizing the well-known isomorphism between modular forms for Γ0(4)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma _0(4)$$\end{document} with Kohnen’s plus condition and modular forms for the Weil representation associated to the lattice with Gram matrix (2). With such an isomorphism, we prove the Zagier duality and express the Borcherds lifts in the case of O(2,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text {O}(2,1)$$\end{document} explicitly.
引用
收藏
页码:507 / 536
页数:29
相关论文
共 25 条
[1]  
Borcherds RE(1995)Automorphic forms on Invent. Math. 120 161-213
[2]  
Borcherds RE(1998) and infinite products Invent. Math. 132 491-562
[3]  
Borcherds RE(1999)Automorphic forms with singularities on Grassmannians Duke Math. J 97 219-233
[4]  
Bruinier JH(2003)The Gross–Kohnen–Zagier theorem in higher dimensions Ramanujan J. 7 49-61
[5]  
Bundschuh M(2010)On Borcherds products associated with lattices of prime discriminant Ann. Math. 172 2135-2181
[6]  
Bruinier JH(2017)Heegner divisors, J. Algebra 478 38-57
[7]  
Ono K(2006)-functions and harmonic weak Maass forms Proc. Am. Math. Soc. 134 3445-3447
[8]  
Bruinier JH(2014)Algebraic formulas for the coefficients of mock theta functions and Weyl vectors of Borcherds products J. Algebra 407 81-104
[9]  
Schwagenscheidt M(2015)A simple proof of Zagier duality for Hilbert modular forms Trans. of Am. Math. Soc. 367 8843-8860
[10]  
Choi D(1982)Rank 2 symmetric hyperbolic Kac–Moody algebras and Hilbert modular forms J. Reine Angew. Math. 333 32-72