Orbital Stability of Standing Waves for the Sobolev Critical Schrödinger Equation with Inverse-Power Potential

被引:3
作者
Cao, Leijin [1 ]
Feng, Binhua [1 ]
Mo, Yichun [2 ]
机构
[1] Northwest Normal Univ, Dept Math, Lanzhou 730070, Peoples R China
[2] Lanzhou Jiaotong Univ, Dept Math, Lanzhou 730070, Peoples R China
基金
中国国家自然科学基金;
关键词
Nonlinear Schrodinger equation; Inverse-power potential; Orbital stability; Ground state; NONLINEAR SCHRODINGER-EQUATIONS; GLOBAL WELL-POSEDNESS; GROUND-STATES; SCATTERING; EXISTENCE;
D O I
10.1007/s12346-024-00980-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the Cauchy problem for the nonlinear Schrodinger equation with focusing inverse-power potential and the Sobolev critical nonlinearity. By considering the corresponding local minimization problem, we show that the existence of ground state solutions. Then, we prove that the solution of this equation exists globally when the initial data phi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi $$\end{document} sufficiently close to the ground states. Based on these results, we show that the set of ground states is orbitally stable.
引用
收藏
页数:27
相关论文
共 27 条
[1]   On stability and instability of standing waves for the nonlinear Schrodinger equation with an inverse-square potential [J].
Bensouilah, Abdelwahab ;
Van Duong Dinh ;
Zhu, Shihui .
JOURNAL OF MATHEMATICAL PHYSICS, 2018, 59 (10)
[2]   A RELATION BETWEEN POINTWISE CONVERGENCE OF FUNCTIONS AND CONVERGENCE OF FUNCTIONALS [J].
BREZIS, H ;
LIEB, E .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 88 (03) :486-490
[3]   ORBITAL STABILITY OF STANDING WAVES FOR SOME NON-LINEAR SCHRODING EQUATIONS [J].
CAZENAVE, T ;
LIONS, PL .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1982, 85 (04) :549-561
[4]  
Cazenave T., 2003, Semilinear Schrodinger equations
[5]   Global well-posedness and scattering for the energy-critical nonlinear Schrodinger equation in R3 [J].
Colliander, J. ;
Keel, M. ;
Staffilani, G. ;
Takaoka, H. ;
Tao, T. .
ANNALS OF MATHEMATICS, 2008, 167 (03) :767-865
[6]   Stability of standing waves for the fractional Schrodinger-Hartree equation [J].
Feng, Binhua ;
Zhang, Honghong .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 460 (01) :352-364
[7]   UNIQUENESS AND NONDEGENERACY OF GROUND STATES FOR NONLINEAR SCHRODINGER EQUATIONS WITH ATTRACTIVE INVERSE-POWER POTENTIAL [J].
Fukaya, Noriyoshi .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2021, 20 (01) :121-143
[8]  
Fukaya N, 2019, OSAKA J MATH, V56, P713
[9]  
Fukuizumi R., 2003, Di . Integral Equ, V16, P111, DOI DOI 10.2337/DIASPECT.16.2.111
[10]   Existence of solutions with prescribed norm for semilinear elliptic equations [J].
Jeanjean, L .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1997, 28 (10) :1633-1659