In the Shallow Water: Auto-Bäcklund, Hetero-Bäcklund and Scaling Transformations via a (2+1)-Dimensional Generalized Broer-Kaup System

被引:77
作者
Gao, Xin-Yi [1 ]
机构
[1] North China Univ Technol, Coll Sci, Beijing 100144, Peoples R China
关键词
Long waves in shallow water; (2+1)-dimensional generalized Broer-Kaup system; Auto-B & auml; cklund transformation; Soliton; Scaling transformation; Hetero-B & auml; RICCATI EQUATION METHOD; LOCALIZED STRUCTURES; SOLITONS; ANNIHILATION; SYMMETRY; FISSION; WAVES;
D O I
10.1007/s12346-024-01025-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
These days, watching the shallow water waves, people think about the nonlinear Broer-type models, e.g., a (2+1)-dimensional generalized Broer-Kaup system modeling, e.g., certain nonlinear long waves in the shallow water. For that system, with reference to, e.g., the wave height and wave horizontal velocity, this paper avails of symbolic computation to obtain (A) an auto-B & auml;cklund transformation with some solitons; (B) a group of the scaling transformations and (C) a group of the hetero-B & auml;cklund transformations, to a known linear partial differential equation, from that system. Results rely on the coefficients in that system
引用
收藏
页数:11
相关论文
共 89 条
[1]   Plenteous specific analytical solutions for new extended deoxyribonucleic acid (DNA) model arising in mathematical biology [J].
Abdou, M. A. ;
Ouahid, Loubna ;
Kumar, Sachin .
MODERN PHYSICS LETTERS B, 2023, 37 (34)
[2]   Existence of Periodic Solutions for a Class of Dynamic Equations with Multiple Time Varying Delays on Time Scales [J].
Agrawal, Divya ;
Abbas, Syed .
QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2024, 23 (01)
[3]   Lie-Backlund Symmetry Generators and a Variety of Novel Periodic-Soliton Solutions to the Complex-Mode of Modified Korteweg-de Vries Equation [J].
Alquran, Marwan ;
Al-deiakeh, Rawya .
QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2024, 23 (02)
[4]  
[Anonymous], 2024, Partial differential equation
[5]   A new class of (2+1)-dimensional combined structures with completely elastic and non-elastic interactive properties [J].
Bai, CL ;
Bai, CJ ;
Zhao, H .
ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2006, 61 (1-2) :53-59
[6]   Exponential polynomials [J].
Bell, ET .
ANNALS OF MATHEMATICS, 1934, 35 :258-277
[7]   Modified SEIAR infectious disease model for Omicron variants spread dynamics [J].
Cao, Feng ;
Lu, Xing ;
Zhou, Yi-Xuan ;
Cheng, Xi-Yu .
NONLINEAR DYNAMICS, 2023, 111 (15) :14597-14620
[8]   Variational Principles for Two Kinds of Coupled Nonlinear Equations in Shallow Water [J].
Cao, Xiao-Qun ;
Guo, Ya-Nan ;
Hou, Shi-Cheng ;
Zhang, Cheng-Zhuo ;
Peng, Ke-Cheng .
SYMMETRY-BASEL, 2020, 12 (05)
[9]   Schwarzian derivative, Painleve XXV-Ermakov equation, and Backlund transformations [J].
Carillo, Sandra ;
Chichurin, Alexander ;
Filipuk, Galina ;
Zullo, Federico .
MATHEMATISCHE NACHRICHTEN, 2024, 297 (01) :83-101
[10]   Elastic collision between one lump wave and multiple stripe waves of nonlinear evolution equations [J].
Chen, Si-Jia ;
Yin, Yu-Hang ;
Lu, Xing .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2024, 130