Configurable phonon polaritons in twisted α-MoO3

被引:259
作者
Chen, Mingyuan [1 ]
Lin, Xiao [2 ]
Dinh, Thao H. [3 ]
Zheng, Zhiren [3 ]
Shen, Jialiang [1 ]
Ma, Qiong [3 ]
Chen, Hongsheng [2 ]
Jarillo-Herrero, Pablo [3 ]
Dai, Siyuan [1 ]
机构
[1] Auburn Univ, Dept Mech Engn, Mat Res & Educ Ctr, Auburn, AL 36849 USA
[2] Zhejiang Univ, Interdisciplinary Ctr Quantum Informat, State Key Lab Modern Opt Instrumentat, ZJU Hangzhou Global Sci & Technol Innovat Ctr, Hangzhou, Peoples R China
[3] MIT, Dept Phys, Cambridge, MA 02139 USA
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
DIRAC FERMIONS; BORON-NITRIDE; GRAPHENE; PLASMONS; LIGHT; TRANSITIONS; CRYSTALS;
D O I
10.1038/s41563-020-0732-6
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Infrared nanoimaging of phonon polaritons in twisted alpha-phase molybdenum trioxide bilayers reveals tunable wavefront geometries and topological transitions over a broad range of twist angles, offering a configurable platform for nanophotonic applications. Moire engineering is being intensively investigated as a method to tune the electronic, magnetic and optical properties of twisted van der Waals materials. Advances in moire engineering stem from the formation of peculiar moire superlattices at small, specific twist angles. Here we report configurable nanoscale light-matter waves-phonon polaritons-by twisting stacked alpha-phase molybdenum trioxide (alpha-MoO3) slabs over a broad range of twist angles from 0 degrees to 90 degrees. Our combined experimental and theoretical results reveal a variety of polariton wavefront geometries and topological transitions as a function of the twist angle. In contrast to the origin of the modified electronic band structure in moire superlattices, the polariton twisting configuration is attributed to the electromagnetic interaction of highly anisotropic hyperbolic polaritons in stacked alpha-MoO(3)slabs. These results indicate twisted alpha-MoO(3)to be a promising platform for nanophotonic devices with tunable functionalities.
引用
收藏
页码:1307 / +
页数:6
相关论文
共 47 条
[1]   Resonantly hybridized excitons in moire superlattices in van der Waals heterostructures [J].
Alexeev, Evgeny M. ;
Ruiz-Tijerina, David A. ;
Danovich, Mark ;
Hamer, Matthew J. ;
Terry, Daniel J. ;
Nayak, Pramoda K. ;
Ahn, Seongjoon ;
Pak, Sangyeon ;
Lee, Juwon ;
Sohn, Jung Inn ;
Molas, Maciej R. ;
Koperski, Maciej ;
Watanabe, Kenji ;
Taniguchi, Takashi ;
Novoselov, Kostya S. ;
Gorbachev, Roman V. ;
Shin, Hyeon Suk ;
Fal'ko, Vladimir I. ;
Tartakovskii, Alexander I. .
NATURE, 2019, 567 (7746) :81-+
[2]   Controlling graphene plasmons with resonant metal antennas and spatial conductivity patterns [J].
Alonso-Gonzalez, P. ;
Nikitin, A. Y. ;
Golmar, F. ;
Centeno, A. ;
Pesquera, A. ;
Velez, S. ;
Chen, J. ;
Navickaite, G. ;
Koppens, F. ;
Zurutuza, A. ;
Casanova, F. ;
Hueso, L. E. ;
Hillenbrand, R. .
SCIENCE, 2014, 344 (6190) :1369-1373
[3]   Infrared Permittivity of the Biaxial van der Waals Semiconductor α-MoO3 from Near- and Far-Field Correlative Studies [J].
Alvarez-Perez, Gonzalo ;
Foland, Thomas G. ;
Errea, Ion ;
Taboada-Gutierrez, Javier ;
Duan, Jiahua ;
Martin-Sanchez, Javier ;
Tresguerres-Mata, Ana I. F. ;
Matson, Joseph R. ;
Bylinkin, Andrei ;
He, Mingze ;
Ma, Weiliang ;
Bao, Qiaoliang ;
Ignacio Martin, Jose ;
Caldwell, Joshua D. ;
Nikitin, Alexey Y. ;
Alonso-Gonzalez, Pablo .
ADVANCED MATERIALS, 2020, 32 (29)
[4]   Nano-optical imaging and spectroscopy of order, phases, and domains in complex solids [J].
Atkin, Joanna M. ;
Berweger, Samuel ;
Jones, Andrew C. ;
Raschke, Markus B. .
ADVANCES IN PHYSICS, 2012, 61 (06) :745-842
[5]   Polaritons in van der Waals materials [J].
Basov, D. N. ;
Fogler, M. M. ;
Garcia de Abajo, F. J. .
SCIENCE, 2016, 354 (6309)
[6]   Ultrabright Room-Temperature Sub-Nanosecond Emission from Single Nitrogen-Vacancy Centers Coupled to Nanopatch Antennas [J].
Bogdanov, Simeon I. ;
Shalaginov, Mikhail Y. ;
Lagutchev, Alexei S. ;
Chiang, Chin-Cheng ;
Shah, Deesha ;
Baburin, Alexandr S. ;
Ryzhikov, Ilya A. ;
Rodionov, Ilya A. ;
Kildishev, Alexander V. ;
Boltasseva, Alexandra ;
Shalaev, Vladimir M. .
NANO LETTERS, 2018, 18 (08) :4837-4844
[7]   Hybrid Surface-Phonon-Plasmon Polariton Modes in Graphene/Monolayer h-BN Heterostructures [J].
Brar, Victor W. ;
Jang, Min Seok ;
Sherrott, Michelle ;
Kim, Seyoon ;
Lopez, Josue J. ;
Kim, Laura B. ;
Choi, Mansoo ;
Atwater, Harry .
NANO LETTERS, 2014, 14 (07) :3876-3880
[8]  
Caldwell JD, 2016, NAT NANOTECHNOL, V11, P9, DOI [10.1038/nnano.2015.305, 10.1038/NNANO.2015.305]
[9]   Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride [J].
Caldwell, Joshua D. ;
Kretinin, Andrey V. ;
Chen, Yiguo ;
Giannini, Vincenzo ;
Fogler, Michael M. ;
Francescato, Yan ;
Ellis, Chase T. ;
Tischler, Joseph G. ;
Woods, Colin R. ;
Giles, Alexander J. ;
Hong, Minghui ;
Watanabe, Kenji ;
Taniguchi, Takashi ;
Maier, Stefan A. ;
Novoselov, Kostya S. .
NATURE COMMUNICATIONS, 2014, 5
[10]   Unconventional superconductivity in magic-angle graphene superlattices [J].
Cao, Yuan ;
Fatemi, Valla ;
Fang, Shiang ;
Watanabe, Kenji ;
Taniguchi, Takashi ;
Kaxiras, Efthimios ;
Jarillo-Herrero, Pablo .
NATURE, 2018, 556 (7699) :43-+