On Exponential Bases and Frames with Non-linear Phase Functions and Some Applications

被引:0
|
作者
Jean-Pierre Gabardo
Chun-Kit Lai
Vignon Oussa
机构
[1] McMaster University,Department of Mathematics
[2] San Francisco State University,Department of Mathematics
[3] Bridgewater State University,Department of Mathematics
来源
Journal of Fourier Analysis and Applications | 2021年 / 27卷
关键词
Expoential bases; Frames; Non-linear phase functions; 42C15;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study the spectrality and frame-spectrality of exponential systems of the type E(Λ,φ)={e2πiλ·φ(x):λ∈Λ}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E(\Lambda ,\varphi ) = \{e^{2\pi i \lambda \cdot \varphi (x)}: \lambda \in \Lambda \}$$\end{document} where the phase function φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi $$\end{document} is a Borel measurable which is not necessarily linear. A complete characterization of pairs (Λ,φ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\Lambda ,\varphi )$$\end{document} for which E(Λ,φ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E(\Lambda ,\varphi )$$\end{document} is an orthogonal basis or a frame for L2(μ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{2}(\mu )$$\end{document} is obtained. In particular, we show that the middle-third Cantor measures and the unit disc, each admits an orthogonal basis with a certain non-linear phase. Under a natural regularity condition on the phase functions, when μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document} is the Lebesgue measure on [0, 1] and Λ=Z,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Lambda = {{\mathbb {Z}}},$$\end{document} we show that only the standard phase functions φ(x)=±x\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi (x) = \pm x$$\end{document} are the only possible functions that give rise to orthonormal bases. Surprisingly, however we prove that there exist a greater degree of flexibility, even for continuously differentiable phase functions in higher dimensions. For instance, we were able to describe a large class of functions φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi $$\end{document} defined on Rd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbb {R}}}^{d}$$\end{document} such that the system E(Λ,φ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E(\Lambda ,\varphi )$$\end{document} is an orthonormal basis for L2[0,1]d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{2}[0,1]^{d}$$\end{document} when d≥2.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\ge 2.$$\end{document} Moreover, we discuss how our results apply to the discretization problem of unitary representations of locally compact groups for the construction of orthonormal bases. Finally, we conclude the paper by stating several open problems.
引用
收藏
相关论文
共 50 条