On Lp→Lq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p\rightarrow L^q$$\end{document} boundedness of the twisted convolution operators

被引:0
作者
Arup Kumar Maity
P. K. Ratnakumar
机构
[1] A CI of Homi Bhabha National Institute,Harish
关键词
Twisted convolution; boundedness; Young’s inequality; Primary 44A35; 44A15; Secondary 42B10; 42B20;
D O I
10.1007/s41478-022-00487-x
中图分类号
学科分类号
摘要
We provide conditions for the boundedness of the twisted convolution operator T:f→f×g\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T : f \rightarrow f \times g$$\end{document} from Lp(Cn)→Lr(Cn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p({\mathbb {C}}^n) \rightarrow L^r({\mathbb {C}}^n)$$\end{document} for g∈Lq(Cn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g \in L^q({\mathbb {C}}^n)$$\end{document}.
引用
收藏
页码:945 / 950
页数:5
相关论文
共 3 条
[1]  
Hörmander L(1960)Estimates for translation invariant operators in Acta Math. 104 93-140
[2]  
Karapetyants AN(2003) spaces Math. Nachr. 250 58-70
[3]  
de Arellano ER(undefined)A boundedness result for twisted convolution undefined undefined undefined-undefined