Periodic groups acting freely on abelian groups

被引:1
|
作者
A. Kh. Zhurtov
D. V. Lytkina
V. D. Mazurov
A. I. Sozutov
机构
[1] Kabardino-Balkarian State University,Institute of Mathematics
[2] Siberian State University of Telecommunications and Informatics,Sobolev Institute of Mathematics
[3] Siberian Branch of the Russian Academy of Sciences,Institute of Mathematics and Computer Science
[4] Siberian Federal University,undefined
来源
Proceedings of the Steklov Institute of Mathematics | 2014年 / 285卷
关键词
periodic group; abelian group; free action; local finiteness;
D O I
暂无
中图分类号
学科分类号
摘要
Let π be a set of primes. A periodic group G is called a π-group if all prime divisors of the order of each of its elements lie in π. An action of G on a nontrivial group V is called free if, for any υ ∈ V and g ∈ G such that υg = υ, either υ = 1 or g = 1. We describe {2, 3}-groups that can act freely on an abelian group.
引用
收藏
页码:209 / 215
页数:6
相关论文
共 50 条