Periodic groups acting freely on abelian groups

被引:1
|
作者
A. Kh. Zhurtov
D. V. Lytkina
V. D. Mazurov
A. I. Sozutov
机构
[1] Kabardino-Balkarian State University,Institute of Mathematics
[2] Siberian State University of Telecommunications and Informatics,Sobolev Institute of Mathematics
[3] Siberian Branch of the Russian Academy of Sciences,Institute of Mathematics and Computer Science
[4] Siberian Federal University,undefined
来源
Proceedings of the Steklov Institute of Mathematics | 2014年 / 285卷
关键词
periodic group; abelian group; free action; local finiteness;
D O I
暂无
中图分类号
学科分类号
摘要
Let π be a set of primes. A periodic group G is called a π-group if all prime divisors of the order of each of its elements lie in π. An action of G on a nontrivial group V is called free if, for any υ ∈ V and g ∈ G such that υg = υ, either υ = 1 or g = 1. We describe {2, 3}-groups that can act freely on an abelian group.
引用
收藏
页码:209 / 215
页数:6
相关论文
共 50 条
  • [31] Endoprimal abelian groups
    Kaarli, K
    Márki, L
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS, 1999, 67 : 412 - 428
  • [32] Biembeddings of Abelian Groups
    Grannell, M. J.
    Knor, M.
    JOURNAL OF COMBINATORIAL DESIGNS, 2010, 18 (01) : 71 - 83
  • [33] On perspective Abelian groups
    Calugareanu, Grigore
    Chekhlov, Andrey
    COMMUNICATIONS IN ALGEBRA, 2025,
  • [34] SEMIHOMOMORPHISMS ON ABELIAN GROUPS
    Abdelkarim, A. A.
    JP JOURNAL OF ALGEBRA NUMBER THEORY AND APPLICATIONS, 2013, 31 (02): : 143 - 149
  • [35] Small Abelian groups
    Gerdt I.V.
    Journal of Mathematical Sciences, 2008, 154 (3) : 279 - 283
  • [36] On homogeneous Abelian groups
    Kalenova, BS
    Khisamiev, NG
    SIBERIAN MATHEMATICAL JOURNAL, 1997, 38 (05) : 950 - 956
  • [37] MORPHIC ABELIAN GROUPS
    Calugareanu, G.
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2010, 9 (02) : 185 - 193
  • [38] Moment maps of Abelian groups and commuting Toeplitz operators acting on the unit ball
    Quiroga-Barranco, Raul
    Sanchez-Nungaray, Armando
    JOURNAL OF FUNCTIONAL ANALYSIS, 2021, 281 (03)
  • [39] Cryptosystems in automorphism groups of group rings of Abelian groups
    Rososhek S.K.
    Journal of Mathematical Sciences, 2008, 154 (3) : 386 - 391
  • [40] Canonical and existential groups in universal classes of Abelian groups
    A. A. Mishchenko
    V. N. Remeslennikov
    A. V. Treier
    Doklady Mathematics, 2016, 93 : 175 - 178