Periodic groups acting freely on abelian groups

被引:1
|
作者
A. Kh. Zhurtov
D. V. Lytkina
V. D. Mazurov
A. I. Sozutov
机构
[1] Kabardino-Balkarian State University,Institute of Mathematics
[2] Siberian State University of Telecommunications and Informatics,Sobolev Institute of Mathematics
[3] Siberian Branch of the Russian Academy of Sciences,Institute of Mathematics and Computer Science
[4] Siberian Federal University,undefined
来源
Proceedings of the Steklov Institute of Mathematics | 2014年 / 285卷
关键词
periodic group; abelian group; free action; local finiteness;
D O I
暂无
中图分类号
学科分类号
摘要
Let π be a set of primes. A periodic group G is called a π-group if all prime divisors of the order of each of its elements lie in π. An action of G on a nontrivial group V is called free if, for any υ ∈ V and g ∈ G such that υg = υ, either υ = 1 or g = 1. We describe {2, 3}-groups that can act freely on an abelian group.
引用
收藏
页码:209 / 215
页数:6
相关论文
共 50 条
  • [1] On periodic groups acting freely on abelian groups
    Zhurtov, A. Kh.
    Lytkina, D. V.
    Mazurov, V. D.
    Sozutov, A. I.
    TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2013, 19 (03): : 136 - 143
  • [2] Periodic groups acting freely on abelian groups
    Zhurtov, A. Kh.
    Lytkina, D. V.
    Mazurov, V. D.
    Sozutov, A. I.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2014, 285 : S209 - S215
  • [3] Periodic groups acting freely on Abelian groups
    Lytkina D.V.
    Algebra and Logic, 2010, 49 (3) : 256 - 261
  • [4] PERIODIC GROUPS ACTING FREELY ON ABELIAN GROUPS
    Lytkina, D. V.
    ALGEBRA AND LOGIC, 2010, 49 (03) : 256 - 261
  • [5] On quasiresolvent periodic abelian groups
    A. N. Khisamiev
    Siberian Mathematical Journal, 2007, 48 : 1115 - 1126
  • [6] On quasiresolvent periodic abelian groups
    Khisamiev, A. N.
    SIBERIAN MATHEMATICAL JOURNAL, 2007, 48 (06) : 1115 - 1126
  • [7] Elementary abelian groups acting on products of spheres
    A. Adem
    D.J. Benson
    Mathematische Zeitschrift, 1998, 228 : 705 - 712
  • [8] Periodic groups saturated with direct products of suzuki groups and elementary abelian 2-groups
    Duzh, A. A.
    Lytkina, D. V.
    SIBERIAN MATHEMATICAL JOURNAL, 2013, 54 (05) : 805 - 809
  • [9] Periodic groups saturated with direct products of suzuki groups and elementary abelian 2-groups
    A. A. Duzh
    D. V. Lytkina
    Siberian Mathematical Journal, 2013, 54 : 805 - 809
  • [10] On abelian groups close to E-solvable groups
    Chekhlov A.R.
    Journal of Mathematical Sciences, 2014, 197 (5) : 708 - 733