共 1 条
Disjointifiable lattice-ordered groups
被引:0
|作者:
Jorge Martínez
机构:
[1] University of Florida,Department of Mathematics
来源:
Algebra universalis
|
2008年
/
59卷
关键词:
Primary: 06D22;
Secondary: 06F20, 18B35;
Disjointifiable ℓ-groups;
normal frames;
weakly zero-dimensional frames;
Hahn groups;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
This article studies disjointifiable lattice-ordered groups (abbr. dℓ-groups): the lattice-ordered groups G for which the frame \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathcal{C}}(G)$$\end{document} of all convex ℓ-subgroups is a normal frame; that is, for which \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$A {\vee} B = G {\rm in} \mathcal{C}(G)$$\end{document} implies the existence of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$C, D {\in} \,{\mathcal{C}}(G)$$\end{document} such that C ⋂D = 0 and A ∨ D = C ∨ B = G. It is shown that if a Hahn group \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$V (\wedge, \mathbb{R})$$\end{document}) is a dℓ-group, then it is strongly disjointifiable (abbr. sdℓ), in the sense that \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$A \vee B = G {\rm in} \mathcal{C}(G)$$\end{document} implies that there is a cardinal summand P of G, such that \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$P {\subseteq} A {\rm and}\,P^{\perp} {\subseteq} B$$\end{document}. Every finite valued ℓ-group is an sdℓ-group.
引用
收藏
页码:159 / 178
页数:19
相关论文