Special functions and multi-stability of the Jensen type random operator equation in C∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$C^{*}$\end{document}-algebras via fixed point

被引:0
|
作者
Safoura Rezaei Aderyani
Reza Saadati
Chenkuan Li
Themistocles M. Rassias
Choonkil Park
机构
[1] Iran University of Science and Technology,School of Mathematics
[2] Brandon University,Department of Mathematics and Computer Science
[3] National Technical University of Athens,Department of Mathematics
[4] Hanyang University,Research Institute for Natural Sciences
关键词
Multi control functions; Mittag–Leffler function; -Fox function; Hypergeometric function; Wright function; -algebras; 54H20; 46L05; 39B62;
D O I
10.1186/s13660-023-02942-0
中图分类号
学科分类号
摘要
In this paper, we apply some special functions to introduce a new class of control functions that help us define the concept of multi-stability. Further, we investigate the multi-stability of homomorphisms in C∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$C^{*}$\end{document}-algebras and Lie C∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$C^{*}$\end{document}-algebras, multi-stability of derivations in C∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$C^{*}$\end{document}-algebras, and Lie C∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$C^{*}$\end{document}-algebras for the following random operator equation via fixed point methods: μf(ð,x+y2)+μf(ð,x−y2)=f(ð,μx).\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mu f \biggl(\eth , \frac{x+y}{2} \biggr) + \mu f \biggl(\eth , \frac{x-y}{2} \biggr) = f(\eth , \mu x) . $$\end{document} In particular, for μ=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mu = 1$\end{document}, the above equation turns out to be Jensen’s random operator equation.
引用
收藏
相关论文
共 50 条