Some graftings of complex projective structures with Schottky holonomy

被引:0
|
作者
Joshua Thompson
机构
[1] Northern Michigan University,
来源
Geometriae Dedicata | 2013年 / 166卷
关键词
Grafting; Complex projective structures; Schottky groups; 51M10;
D O I
暂无
中图分类号
学科分类号
摘要
Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{G} ^{*}(S, \rho)}$$\end{document} be the graph whose vertices are marked complex projective structures with holonomy \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\rho}$$\end{document} and whose edges are graftings from one vertex to another. If \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\rho}$$\end{document} is quasi-Fuchsian, a theorem of Goldman implies that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{G} ^{*}(S, \rho)}$$\end{document} is connected. If \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\rho ( \pi _{1}(S))}$$\end{document} is a Schottky group Baba has shown that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{G}(S, \rho)}$$\end{document} (the corresponding graph for unmarked structures) is connected. For the case that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\rho ( \pi _{1}(S))}$$\end{document} is a Schottky group, this paper provides formulae for the composition of graftings in a basic setting. Using these formulae, one can construct an infinite number of (standard) projective structures which can be grafted to a common structure. Furthermore, one can construct pairs of projective structures which can be connected by grafting in an infinite number of ways.
引用
收藏
页码:203 / 232
页数:29
相关论文
共 50 条