Let \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathcal{G} ^{*}(S, \rho)}$$\end{document} be the graph whose vertices are marked complex projective structures with holonomy \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\rho}$$\end{document} and whose edges are graftings from one vertex to another. If \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\rho}$$\end{document} is quasi-Fuchsian, a theorem of Goldman implies that \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathcal{G} ^{*}(S, \rho)}$$\end{document} is connected. If \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\rho ( \pi _{1}(S))}$$\end{document} is a Schottky group Baba has shown that \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathcal{G}(S, \rho)}$$\end{document} (the corresponding graph for unmarked structures) is connected. For the case that \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\rho ( \pi _{1}(S))}$$\end{document} is a Schottky group, this paper provides formulae for the composition of graftings in a basic setting. Using these formulae, one can construct an infinite number of (standard) projective structures which can be grafted to a common structure. Furthermore, one can construct pairs of projective structures which can be connected by grafting in an infinite number of ways.
机构:
Univ Sydney, Sydney Math Res Inst, Sydney, NSW, Australia
Univ Sydney, Sydney Math Res Inst, Quadrangle A14, Sydney, NSW 2050, AustraliaUniv Sydney, Sydney Math Res Inst, Sydney, NSW, Australia
机构:
Univ Bologna, Dipartimento Matemat, Piazza Porta San Donato 5, I-40126 Bologna, ItalyUniv Bologna, Dipartimento Matemat, Piazza Porta San Donato 5, I-40126 Bologna, Italy