In this note, we will give another proof of the uniqueness of mild solutions to the Navier-Stokes equations in the class C([0,∞);\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$L^{d}(\mathbb {R}^{d})^{d})$$
\end{document} by a simple application of Giga-Shor’s Lp − Lq (time-space) estimates, i.e., integral norms in the time variable. The proof relies on a method introduced by S. Monniaux [9] to prove the same result.