Numerical Study of an Ultra-Broadband and Wide-Angle Insensitive Perfect Metamaterial Absorber in the UV–NIR Region

被引:0
|
作者
Thi Quynh Mai Nguyen
Thi Kim Thu Nguyen
Dac Tuyen Le
Chi Lam Truong
Dinh Lam Vu
Thi Quynh Hoa Nguyen
机构
[1] Vinh University,School of Engineering and Technology
[2] Hanoi University of Mining and Geology,Department of Physics
[3] Nguyen Tat Thanh University,NTT Hi
[4] Vietnam Academy of Science and Technology,Tech Institute
来源
Plasmonics | 2021年 / 16卷
关键词
Metamaterials; Absorber; UV–NIR; Broadband; Surface plasmon resonance;
D O I
暂无
中图分类号
学科分类号
摘要
Developing a simple structure using low-cost material that enables both large-scale fabrication and broadband absorption response is highly desirable but very challenging for achieving high-performance metamaterial absorber. Herein, we propose and numerically investigate an ultra-broadband and wide-angle insensitive perfect metamaterial absorber in the ultraviolet to near-infrared (UV–NIR) region based on a simple metal–dielectric–metal structure. The proposed absorber structure consists of a periodic array of a tungsten hexagonal prism and a tungsten ground plane separated by a silicon dioxide dielectric substrate. The proposed absorber achieves an ultra-broadband absorption response in the range of 275–1000 nm with an absorptivity above 90%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document} and a relative bandwidth of 106.8%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document} at normal incidence, which covers from the UV to NIR region. The absorption efficiency is maintained with the figure of merit ηOBW\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta _{OBW}$$\end{document} higher than 90%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document} for a wide incident angle up to 40o\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{o}$$\end{document} for transverse electric (TE) polarization and 65o\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{o}$$\end{document} for transverse magnetic (TM) polarization. The effects of structural parameters and different metallic materials on the absorption performance are presented. In addition, the physical mechanism is analyzed using the surface density and distributions of electric and magnetic fields that are attributed to both localized surface plasmon (LSP) and propagating surface plasmon (PSP) resonances. Owing to outstanding merits of simple structure, low cost, and high absorption performance, the designed absorber can be suitable for many applications in the UV–NIR spectrum such as thermal emitters and solar cells.
引用
收藏
页码:1583 / 1592
页数:9
相关论文
共 50 条
  • [41] Ultra-Broadband and Wide-Angle Metamaterial Absorber with Carbon Black/Carbonyl Iron Composites Fabricated by Direct-Ink-Write 3D Printing
    Zhang, Zhe
    Wang, Fei
    Zhang, Jiliang
    Li, Peifeng
    Jiang, Kaiyong
    ADVANCED ENGINEERING MATERIALS, 2023, 25 (06)
  • [42] Design of Ultra-Broadband Metamaterial Absorber in the Long-Wave Infrared Region Based on Impedance Matching
    Wang, Yang
    Chen, Xiaoman
    Li, Xiu
    Wu, Shenbing
    Hu, Yanli
    PLASMONICS, 2025,
  • [43] Tunable ultra-narrowband and wide-angle graphene-based perfect absorber in the optical communication region
    Luo, Xin
    Liu, Zhimin
    Wang, Lingling
    Liu, Jianping
    Lin, Qi
    APPLIED PHYSICS EXPRESS, 2018, 11 (10)
  • [44] UV-visible broadband wide-angle polarization-insensitive absorber based on metal groove structures with multiple depths
    Wu, Tao
    Lai, Jianjun
    Wang, Shaowu
    Li, Xiaoping
    Huang, Ying
    APPLIED OPTICS, 2017, 56 (21) : 5844 - 5848
  • [45] An Ultra-Thin, Triple-Band, Incident Angle-Insensitive Perfect Metamaterial Absorber
    Jahan, M. S. T. Ishrat
    Faruque, Mohammad Rashed Iqbal
    Hossain, Md Bellal
    Abdullah, Sabirin
    MATERIALS, 2023, 16 (04)
  • [46] Numerical Study of an Ultra-Broadband All-Silicon Terahertz Absorber
    Wang, Jinfeng
    Lang, Tingting
    Shen, Tingting
    Shen, Changyu
    Hong, Zhi
    Lu, Congcong
    APPLIED SCIENCES-BASEL, 2020, 10 (02):
  • [47] Wide-angle broadband absorber based on one-dimensional metasurface in the visible region
    Luo, Minghui
    Zhou, Yun
    Wu, Shangliang
    Chen, Linsen
    APPLIED PHYSICS EXPRESS, 2017, 10 (09)
  • [48] Ultra-Broadband Wide-Angle Terahertz Absorption Properties of 3D Graphene Foam
    Huang, Zhiyu
    Chen, Honghui
    Huang, Yi
    Ge, Zhen
    Zhou, Ying
    Yang, Yang
    Xiao, Peishuang
    Liang, Jiajie
    Zhang, Tengfei
    Shi, Qian
    Li, Guanghao
    Chen, Yongsheng
    ADVANCED FUNCTIONAL MATERIALS, 2018, 28 (02)
  • [49] Ultra-broadband wide-angle linear polarization converter based on H-shaped metasurface
    Xu, Jin
    Li, Rongqiang
    Qin, Jin
    Wang, Shenyun
    Han, Tiancheng
    OPTICS EXPRESS, 2018, 26 (16): : 20913 - 20919
  • [50] Silicon-based ultra-broadband mid-IR and LWIR near-perfect metamaterial absorber
    Abouelez, Ahmed Elsayed
    Eldiwany, Essam A.
    Swillam, Mohamed A.
    OPTICAL AND QUANTUM ELECTRONICS, 2024, 56 (07)