Small inductive dimension and universality on frames

被引:0
|
作者
Dimitrios N. Georgiou
Stavros D. Iliadis
Athanasios C. Megaritis
Fotini Sereti
机构
[1] University of Patras,Department of Mathematics
[2] Moscow State University (M. V. Lomonosov),Department of General Topology and Geometry
[3] Technological Educational Institute of Peloponnese,Department of Computer Engineering
来源
Algebra universalis | 2019年 / 80卷
关键词
Small inductive dimension of frames; Universal frame; Saturated class of frames; 06A06; 06D22; 06F30; 54H12; 54F05;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we prove that for a fixed integer or an ordinal α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} and a fixed infinite cardinal τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau $$\end{document} the class of all regular frames of weight less than or equal to τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau $$\end{document} with small inductive dimension less than or equal to α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} is saturated and therefore, in this class of frames there exist universal elements.
引用
收藏
相关论文
共 50 条
  • [21] Finite spaces: a reduction algorithm for the computation of the small inductive dimension
    D. N. Georgiou
    A. C. Megaritis
    S. P. Moshokoa
    Computational and Applied Mathematics, 2017, 36 : 791 - 803
  • [22] UNIFORMIZATION OF TOPOLOGICAL-SPACES WITH SMALL INDUCTIVE DIMENSION ZERO
    BROUGHAN, KA
    MATHEMATISCHE ANNALEN, 1973, 205 (03) : 241 - 242
  • [23] ON EQUIVALENCE OF SMALL AND LARGE INDUCTIVE DIMENSION IN CERTAIN METRIC SPACES
    FITZPATRICK, B
    FORD, RM
    DUKE MATHEMATICAL JOURNAL, 1967, 34 (01) : 33 - +
  • [24] Finite spaces: a reduction algorithm for the computation of the small inductive dimension
    Georgiou, D. N.
    Megaritis, A. C.
    Moshokoa, S. P.
    COMPUTATIONAL & APPLIED MATHEMATICS, 2017, 36 (01): : 791 - 803
  • [25] Inductive Moving Frames
    Francis Valiquette
    Results in Mathematics, 2013, 64 : 37 - 58
  • [26] Note on isometric universality and dimension
    Pol, Elzbieta
    Pol, Roman
    ISRAEL JOURNAL OF MATHEMATICS, 2015, 209 (01) : 187 - 197
  • [27] Note on isometric universality and dimension
    Elżbieta Pol
    Roman Pol
    Israel Journal of Mathematics, 2015, 209 : 187 - 197
  • [28] Dimension in algebraic frames
    Martinez, Jorge
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2006, 56 (02) : 437 - 474
  • [29] Dimension in algebraic frames
    Jorge Martínez
    Czechoslovak Mathematical Journal, 2006, 56 : 437 - 474
  • [30] A computing procedure for the small inductive dimension of a finite T0-space
    Georgiou, Dimitris N.
    Megaritis, Athanasios C.
    Moshokoa, Seithuti P.
    COMPUTATIONAL & APPLIED MATHEMATICS, 2015, 34 (01): : 401 - 415