We analyze family of solutions to multidimensional scalar conservation law, with flux depending on the time and space explicitly, regularized with vanishing diffusion and dispersion terms. Under a condition on the balance between diffusion and dispersion parameters, we prove that the family of solutions is precompact in \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${L^1_{\rm loc}}$$\end{document}. Our proof is based on the methodology developed in Sazhenkov (Sibirsk Math Zh 47(2):431–454, 2006), which is in turn based on Panov’s extension (Panov and Yu in Mat Sb 185(2):87–106, 1994) of Tartar’s H-measures (Tartar in Proc R Soc Edinb Sect A 115(3–4):193–230, 1990), or Gerard’s micro-local defect measures (Gerard Commun Partial Differ Equ 16(11):1761–1794, 1991). This is new approach for the diffusion–dispersion limit problems. Previous results were restricted to scalar conservation laws with flux depending only on the state variable.