The convex hull of the lattice points inside a curve

被引:0
作者
M. N. Huxley
机构
[1] University of Cardiff,School of Mathematics
来源
Periodica Mathematica Hungarica | 2014年 / 68卷
关键词
Convex hull; Lattice points; Integer points; Number of vertices; Kloosterman sums; Plane domains; 11H06; 52C05; 11P21;
D O I
暂无
中图分类号
学科分类号
摘要
Let C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C$$\end{document} be a smooth convex closed plane curve. The C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C$$\end{document}-ovals C(R,u,v)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C(R,u,v)$$\end{document} are formed by expanding by a factor R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R$$\end{document}, then translating by (u,v)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(u,v)$$\end{document}. The number of vertices V(R,u,v)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V(R,u,v)$$\end{document} of the convex hull of the integer points within or on C(R,u,v)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C(R,u,v)$$\end{document} has order R2/3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R^{2/3}$$\end{document} (Balog and Bárány) and has average size BR2/3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$BR^{2/3}$$\end{document} as R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R$$\end{document} varies (Balog and Deshouillers). We find the space average of V(R,u,v)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V(R,u,v)$$\end{document} over vectors (u,v)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(u,v)$$\end{document} to be BR2/3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$BR^{2/3}$$\end{document} with an explicit coefficient B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B$$\end{document}, and show that the average over R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R$$\end{document} has the same B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B$$\end{document}. The proof involves counting edges and finding the domain D(q,a)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D(q,a)$$\end{document} of an integer vector, the set of (u,v)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(u,v)$$\end{document} for which the convex hull has a directed edge parallel to (q,a)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(q,a)$$\end{document}. The resulting sum over bases of the integer lattice is approximated by a triple integral.
引用
收藏
页码:100 / 118
页数:18
相关论文
共 13 条
[1]  
Huxley M.N.(1993)Exponential sums and lattice points II Proc. Lond. Math. Soc. (3) 66 279-301
[2]  
Huxley M.N.(2003)Exponential sums and lattice points III Proc. Lond. Math. Soc. (3) 87 591-609
[3]  
Huxley M.N.(2001)On the distribution of Farey fractions and hyperbolic lattice points Period. Math. Hung. 42 191-198
[4]  
Zhigljavsky A.A.(2010)The number of configurations in lattice point counting I Forum Math. 22 127-152
[5]  
Huxley M.N.(1948)On the number of lattice points inside a random oval Quart. J. Math. Oxford 19 1-26
[6]  
Žunić J.(2009)Integer points close to convex surfaces Acta Arith. 138 1-23
[7]  
Kendall D.G.(2010)Integer points close to convex hypersurfaces Acta Arith. 141 73-101
[8]  
Lettington M.C.(1906)O pewnem zagadneniu w rachunku funkcyj asymptoticznych Prace Mat. Fiz. 17 77-118
[9]  
Lettington M.C.(1971)An estimate for Kloosterman sums Izvestiya Akad. Nauk SSSR Ser. Mat. 35 308-323
[10]  
Sierpiński W(1903)Sur un problème du calcul des fonctions asymptotiques J. Reine Angew. Math. 126 241-282