On Hopf Galois extension of separable algebras

被引:0
作者
Yu Lu
Shenglin Zhu
机构
[1] Fudan University,School of Mathematical Sciences
来源
Chinese Annals of Mathematics, Series B | 2017年 / 38卷
关键词
Semisimple Hopf algebra; Hopf Galois extension; Separable algebra; Galois connection; 17B40; 17B50;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, the classical Galois theory to the H*-Galois case is developed. Let H be a semisimple and cosemisimple Hopf algebra over a field k, A a left H-module algebra, and A/AH a right H*-Galois extension. The authors prove that, if AH is a separable k-algebra, then for any right coideal subalgebra B of H, the B-invariants AB = {a ∈ A | b · a = ε(b)a, ∀b ∈ B} is a separable k-algebra. They also establish a Galois connection between right coideal subalgebras of H and separable subalgebras of A containing AH as in the classical case. The results are applied to the case H = (kG)* for a finite group G to get a Galois 1-1 correspondence.
引用
收藏
页码:999 / 1018
页数:19
相关论文
共 22 条
  • [1] Auslander M.(1960)The brauer group of a commutative ring Trans. Amer. Math. Soc. 97 367-409
  • [2] Goldman O.(1965)Galois theory and Galois cohomology of commutative rings Mem. Amer. Math. Soc. 52 15-33
  • [3] Chase S. U.(1986)Hopf algebra actions J. Algebra 100 363-379
  • [4] Harrison D. K.(1992)Semisimple extensions and elements of trace 1 J. Algebra 149 419-437
  • [5] Rosenberg A.(1966)On semisimple extensions and separable extensions over non commutative rings J. Math. Soc. Japan 18 360-373
  • [6] Cohen M.(1981)Hopf algebras and Galois extensions of an algebra Indiana Univ. Math. J. 30 675-692
  • [7] Fishman D.(1964)On commutor ring and Galois theory of separable algebras Osaka J. Math. 1 103-115
  • [8] Cohen M.(1992)Freeness of Hopf algebra over coideal subalgebras Comm. in Algebra 20 1353-1373
  • [9] Fishman D.(1975)The antipode of a finite-dimensional Hopf algebra over a field has finite order Bull. Amer. Math. Soc. 81 1103-1105
  • [10] Hirata K.(2005)On generalized Hopf Galois extensions Journal of Pure and Applied Algebra 202 168-194