Barnes-type Daehee of the first kind and poly-Cauchy of the first kind mixed-type polynomials

被引:0
作者
Dae San Kim
Taekyun Kim
Takao Komatsu
Sang-Hun Lee
机构
[1] Sogang University,Department of Mathematics
[2] Kwangwoon University,Department of Mathematics
[3] Hirosaki University,Graduate School of Science and Technology
[4] Kwangwoon University,Division of General Education
来源
Advances in Difference Equations | / 2014卷
关键词
Sheffer Sequences; Umbral Calculus; Daehee Polynomials; Interesting Identities; Cauchy Number;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, by considering Barnes-type Daehee polynomials of the first kind as well as poly-Cauchy polynomials of the first kind, we define and investigate the mixed-type polynomials of these polynomials. From the properties of Sheffer sequences of these polynomials arising from umbral calculus, we derive new and interesting identities.
引用
收藏
相关论文
共 16 条
[1]  
Kim T(2002)An invariant Integral Transforms Spec. Funct 13 65-69
[2]  
Kim DS(2013)-adic integral associated with Daehee numbers Adv. Stud. Contemp. Math. (Kyungshang) 23 355-366
[3]  
Kim T(2009)On the associated sequence of special polynomials Adv. Stud. Contemp. Math. (Kyungshang) 18 41-48
[4]  
Rim S-H(2013)Remarks on Mosc. J. Comb. Number Theory 3 183-209
[5]  
Ozden H(2005)-Bernoulli numbers associated with Daehee numbers Adv. Stud. Contemp. Math 10 121-129
[6]  
Cangul IN(2004)Poly-Cauchy polynomials Adv. Stud. Contemp. Math 9 153-163
[7]  
Simsek Y(1961)Barnes’ type multiple Changhee Scr. Math 25 323-330
[8]  
Kamano K(undefined)-zeta functions undefined undefined undefined-undefined
[9]  
Komatsu T(undefined)On the roots of the undefined undefined undefined-undefined
[10]  
Simsek Y(undefined)-analogue of Euler-Barnes’ polynomia undefined undefined undefined-undefined