共 50 条
Homogenization of Steklov eigenvalues with rapidly oscillating weights
被引:0
|作者:
Ariel M. Salort
机构:
[1] Ciudad Universitaria,Departamento de Matemática, FCEyN
来源:
Calculus of Variations and Partial Differential Equations
|
2022年
/
61卷
关键词:
35B27;
42B20;
35J92;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
In this article we study the homogenization rates of eigenvalues of a Steklov problem with rapidly oscillating periodic weight functions. The results are obtained via a careful study of oscillating functions on the boundary and a precise estimate of the L∞\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$L^\infty $$\end{document} bound of eigenfunctions. As an application we provide some estimates on the first nontrivial curve of the Dancer–Fučík spectrum.
引用
收藏
相关论文