Homogenization of Steklov eigenvalues with rapidly oscillating weights

被引:0
|
作者
Ariel M. Salort
机构
[1] Ciudad Universitaria,Departamento de Matemática, FCEyN
来源
Calculus of Variations and Partial Differential Equations | 2022年 / 61卷
关键词
35B27; 42B20; 35J92;
D O I
暂无
中图分类号
学科分类号
摘要
In this article we study the homogenization rates of eigenvalues of a Steklov problem with rapidly oscillating periodic weight functions. The results are obtained via a careful study of oscillating functions on the boundary and a precise estimate of the L∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^\infty $$\end{document} bound of eigenfunctions. As an application we provide some estimates on the first nontrivial curve of the Dancer–Fučík spectrum.
引用
收藏
相关论文
共 50 条
  • [1] Homogenization of Steklov eigenvalues with rapidly oscillating weights
    Salort, Ariel M.
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2022, 61 (01)
  • [2] Estimates of eigenvalues and eigenfunctions in elliptic homogenization with rapidly oscillating potentials
    Zhang, Yiping
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 292 : 388 - 415
  • [3] A SHAPE OPTIMIZATION PROBLEM FOR STEKLOV EIGENVALUES IN OSCILLATING DOMAINS
    Fernandez Bonder, Julian
    Spedaletti, Juan F.
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2017, 23 (02) : 373 - 390
  • [4] MULTISCALE COMPUTATION OF A STEKLOV EIGENVALUE PROBLEM WITH RAPIDLY OSCILLATING COEFFICIENTS
    Cao, Li-Qun
    Zhang, Lei
    Allegretto, Walter
    Lin, Yanping
    INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2013, 10 (01) : 42 - 73
  • [5] Homogenization of Some Problems with Rapidly Oscillating Constraints
    G. A. Yosifian
    Journal of Mathematical Sciences, 2004, 120 (3) : 1353 - 1363
  • [6] Exterior Steklov eigenvalues and modified exterior Steklov eigenvalues in inverse scattering
    Li, Yuan
    INVERSE PROBLEMS, 2020, 36 (10)
  • [7] Steklov eigenvalues for the ∞-Laplacian
    Garcia-Azorero, Jesus
    Manfredi, Juan J.
    Peral, Ireneo
    Rossi, Julio D.
    RENDICONTI LINCEI-MATEMATICA E APPLICAZIONI, 2006, 17 (03) : 199 - 210
  • [8] Inequalities for the Steklov eigenvalues
    Xia, Changyu
    Wang, Qiaoling
    CHAOS SOLITONS & FRACTALS, 2013, 48 : 61 - 67
  • [9] Bounds for the Steklov eigenvalues
    Sheela Verma
    Archiv der Mathematik, 2018, 111 : 657 - 668
  • [10] Bounds for the Steklov eigenvalues
    Verma, Sheela
    ARCHIV DER MATHEMATIK, 2018, 111 (06) : 657 - 668