Effective Forchheimer Coefficient for Layered Porous Media

被引:0
作者
Alessandro Lenci
Farhad Zeighami
Vittorio Di Federico
机构
[1] University of Bologna,Department of Civil, Chemical, Environmental and Materials Engineering (DICAM)
来源
Transport in Porous Media | 2022年 / 144卷
关键词
Forchheimer flow; Non-Darcy; Porous media; Effective properties; Upscaling;
D O I
暂无
中图分类号
学科分类号
摘要
Inertial flow in porous media, governed by the Forchheimer equation, is affected by domain heterogeneity at the field scale. We propose a method to derive formulae of the effective Forchheimer coefficient with application to a perfectly stratified medium. Consider uniform flow under a constant pressure gradient ΔP/L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta P/L$$\end{document} in a layered permeability field with a given probability distribution. The local Forchheimer coefficient β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta$$\end{document} is related to the local permeability k via the relation β=a/kc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta =a/k^c$$\end{document}, where a>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a>0$$\end{document} being a constant and c∈[0,2]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c\in [0,2]$$\end{document}. Under ergodicity, an effective value of β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta$$\end{document} is derived for flow (i) perpendicular and (ii) parallel to layers. Expressions for effective Forchheimer coefficient, βe\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta _e$$\end{document}, generalize previous formulations for discrete permeability variations. Closed-form βe\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta _e$$\end{document} expressions are derived for flow perpendicular to layers and under two limit cases, F≪1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F\ll 1$$\end{document} and F≫1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F\gg 1$$\end{document}, for flow parallel to layering, with F a Forchheimer number depending on the pressure gradient. For F of order unity, βe\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta _e$$\end{document} is obtained numerically: when realistic values of ΔP/L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta P/L$$\end{document} and a are adopted, βe\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta _e$$\end{document} approaches the results valid for the high Forchheimer approximation. Further, βe\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta _{e}$$\end{document} increases with heterogeneity, with values always larger than those it would take if the β-k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta - k$$\end{document} relationship was applied to the mean permeability; it increases (decreases) with increasing (decreasing) exponent c for flow perpendicular (parallel) to layers. βe\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta _{e}$$\end{document} is also moderately sensitive to the permeability distribution, and is larger for the gamma than for the lognormal distribution.
引用
收藏
页码:459 / 480
页数:21
相关论文
共 92 条
[1]  
Agnaou M(2017)Origin of the inertial deviation from Darcy’s law: An investigation from a microscopic flow analysis on two-dimensional model structures Physical Review E 96 105-36
[2]  
Lasseux D(2020)Flow of shear-thinning fluids through porous media Adv. Water Resour. 143 658-88
[3]  
Ahmadi A(2017)Numerical study of inertial effects on permeability of porous media utilizing the Lattice Boltzmann Method J. Nat. Gas Sci. Eng. 44 22-229
[4]  
Airiau C(2014)Upscaling of Forchheimer flows Adv. Water Resour. 70 77-60
[5]  
Bottaro A(2007)Upscaling Forchheimer law Trans. Porous Media 70 213-187
[6]  
Arabjamaloei R(2010)Polynomial filtration laws for low Reynolds number flows through porous media Transport in Porous Media 81 35-10
[7]  
Ruth D(2000)Drainage equations and non-Darcian modelling in coarse porous media or geosynthetic materials J. Hydrol. 228 174-1076
[8]  
Aulisa E(2017)Solute plumes mean velocity in aquifer transport: Impact of injection and detection modes Adv. Water Resour. 106 6-94
[9]  
Bloshanskaya L(2010)Estimates of effective permeability for non-Newtonian fluid flow in randomly heterogeneous porous media Stochastic Environ. Res. Risk Assess. 24 1067-370
[10]  
Efendiev Y(2019)Pore-network modelling of non-Darcy flow through heterogeneous porous media Adv. Water Resour. 131 378-128