Divisibility properties of hyperharmonic numbers

被引:0
作者
H. Göral
D. C. Sertbaş
机构
[1] Kayser Dağı,Nesin Mathematics Village
[2] Cumhuriyet University,Department of Mathematics, Faculty of Sciences
来源
Acta Mathematica Hungarica | 2018年 / 154卷
关键词
hyperharmonic number; harmonic number; congruence identity; primary 11B83; 5A10; 11B75;
D O I
暂无
中图分类号
学科分类号
摘要
We extend Wolstenholme’s theorem to hyperharmonic numbers. Then, we obtain infinitely many congruence classes for hyperharmonic numbers using combinatorial methods. In particular, we show that the numerator of any hyperharmonic number in its reduced fractional form is odd. Then we give quantitative estimates for the number of pairs (n, r) lying in a rectangle where the corresponding hyperharmonic number hn(r)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${ h_n^{(r)} }$$\end{document} is divisible by a given prime number p. We also provide p-adic value lower bounds for certain hyperharmonic numbers. It is an open problem that given a prime number p, there are only finitely many harmonic numbers hn which are divisible by p. We show that if we go to the higher levels r ≥  2, there are infinitely many hyperharmonic numbers hn(r)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${ h_n^{(r)} }$$\end{document} which are divisible by p. We also prove a finiteness result which is effective.
引用
收藏
页码:147 / 186
页数:39
相关论文
共 18 条
  • [1] Alkan E.(1994)Variations on Wolstenholme’s Theorem Amer. Math. Monthly, 101 1001-1004
  • [2] Alkan E.(2013)Approximation by special values of harmonic zeta function and log-sine integrals Comm. Number Theory Physics, 7 515-550
  • [3] Alkan E.(2015)Special values of the Riemann zeta function capture all real numbers Proc. Amer. Math. Soc., 143 3743-3752
  • [4] Babbage C.(1819)Demonstration of a theorem relating to prime numbers Edinburgh Philos. J., 1 46-49
  • [5] Boyd D. W.(1994)A Experiment. Math., 3 287-302
  • [6] Carlitz L.(1954)-adic study of the partial sums of the harmonic series Amer. Math. Monthly, 61 174-176
  • [7] Dil A.(2009)A note on Wolstenholme’s theorem Cent. Eur. J. Math., 7 310-321
  • [8] Mező I.(1991)Euler–Seidel method for certain combinatorial numbers and a new characterization of Fibonacci sequence Discrete Math., 91 249-257
  • [9] Eswarathasan A.(2017)-integral harmonic sums J. Number Theory, 171 495-526
  • [10] Levine E.(2017)Almost all hyperharmonic numbers are not integers J. Number Theory, 177 20-27