共 18 条
- [1] Alkan E.(1994)Variations on Wolstenholme’s Theorem Amer. Math. Monthly, 101 1001-1004
- [2] Alkan E.(2013)Approximation by special values of harmonic zeta function and log-sine integrals Comm. Number Theory Physics, 7 515-550
- [3] Alkan E.(2015)Special values of the Riemann zeta function capture all real numbers Proc. Amer. Math. Soc., 143 3743-3752
- [4] Babbage C.(1819)Demonstration of a theorem relating to prime numbers Edinburgh Philos. J., 1 46-49
- [5] Boyd D. W.(1994)A Experiment. Math., 3 287-302
- [6] Carlitz L.(1954)-adic study of the partial sums of the harmonic series Amer. Math. Monthly, 61 174-176
- [7] Dil A.(2009)A note on Wolstenholme’s theorem Cent. Eur. J. Math., 7 310-321
- [8] Mező I.(1991)Euler–Seidel method for certain combinatorial numbers and a new characterization of Fibonacci sequence Discrete Math., 91 249-257
- [9] Eswarathasan A.(2017)-integral harmonic sums J. Number Theory, 171 495-526
- [10] Levine E.(2017)Almost all hyperharmonic numbers are not integers J. Number Theory, 177 20-27