Discretization of functionals involving the Monge–Ampère operator

被引:0
|
作者
Jean-David Benamou
Guillaume Carlier
Quentin Mérigot
Édouard Oudet
机构
[1] INRIA,Laboratoire Jean Kuntzmann
[2] Ceremade,undefined
[3] Université Paris-Dauphine,undefined
[4] Ceremade,undefined
[5] Université Paris-Dauphine,undefined
[6] CNRS,undefined
[7] Univ. Grenoble Alpes,undefined
来源
Numerische Mathematik | 2016年 / 134卷
关键词
49M25; 52B55;
D O I
暂无
中图分类号
学科分类号
摘要
Gradient flows in the Wasserstein space have become a powerful tool in the analysis of diffusion equations, following the seminal work of Jordan, Kinderlehrer and Otto (JKO). The numerical applications of this formulation have been limited by the difficulty to compute the Wasserstein distance in dimension ⩾\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\geqslant $$\end{document}2. One step of the JKO scheme is equivalent to a variational problem on the space of convex functions, which involves the Monge–Ampère operator. Convexity constraints are notably difficult to handle numerically, but in our setting the internal energy plays the role of a barrier for these constraints. This enables us to introduce a consistent discretization, which inherits convexity properties of the continuous variational problem. We show the effectiveness of our approach on nonlinear diffusion and crowd-motion models.
引用
收藏
页码:611 / 636
页数:25
相关论文
共 50 条
  • [31] Choquet-Monge-Ampère Classes
    Vincent Guedj
    Sibel Sahin
    Ahmed Zeriahi
    Potential Analysis, 2017, 46 : 149 - 165
  • [32] Monge-Ampère geometry and vortices
    Napper, Lewis
    Roulstone, Ian
    Rubtsov, Vladimir
    Wolf, Martin
    NONLINEARITY, 2024, 37 (04)
  • [33] Monge-Ampère operators and valuations
    Knoerr, Jonas
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2024, 63 (04)
  • [34] An inequality for mixed Monge–Ampère measures
    Sławomir Dinew
    Mathematische Zeitschrift, 2009, 262
  • [35] Monge–Ampère equation on exterior domains
    Jiguang Bao
    Haigang Li
    Lei Zhang
    Calculus of Variations and Partial Differential Equations, 2015, 52 : 39 - 63
  • [36] The properties of a new fractional g-Laplacian Monge-Ampère operator and its applications
    Wang, Guotao
    Yang, Rui
    Zhang, Lihong
    ADVANCES IN NONLINEAR ANALYSIS, 2024, 13 (01)
  • [37] A Priori Estimate for the Complex Monge–Ampère Equation
    Jiaxiang Wang
    Xu-Jia Wang
    Bin Zhou
    Peking Mathematical Journal, 2021, 4 (1) : 143 - 157
  • [38] A local regularity of the complex Monge–Ampère equation
    Zbigniew Błocki
    Sławomir Dinew
    Mathematische Annalen, 2011, 351 : 411 - 416
  • [39] OPTIMIZATION APPROACH FOR THE MONGE-AMPèRE EQUATION
    Fethi BEN BELGACEM
    Acta Mathematica Scientia(English Series), 2018, 38 (04) : 1285 - 1295
  • [40] The Monge–Ampère equation with Guillemin boundary conditions
    Daniel Rubin
    Calculus of Variations and Partial Differential Equations, 2015, 54 : 951 - 968